micRoclean: an R package for decontaminating low-biomass 16S-rRNA microbiome data.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1556361
Rachel Griffard-Smith, Emily Schueddig, Diane E Mahoney, Prabhakar Chalise, Devin C Koestler, Dong Pei
{"title":"micRoclean: an R package for decontaminating low-biomass 16S-rRNA microbiome data.","authors":"Rachel Griffard-Smith, Emily Schueddig, Diane E Mahoney, Prabhakar Chalise, Devin C Koestler, Dong Pei","doi":"10.3389/fbinf.2025.1556361","DOIUrl":null,"url":null,"abstract":"<p><p>In 16S-rRNA microbiome studies, cross-contamination and environmental contamination can obscure true biological signal. This contamination is particularly problematic in low-biomass studies, which are characterized by samples with a small amount of microbial DNA. Although multiple methods and packages for decontaminating microbiome data exist, there is no consensus on the most appropriate tool for decontamination based on the individual research study design and how to quantify the impact of removing identified contaminants to avoid over-filtering. To address these gaps, we introduce micRoclean, an open-source R package that contains two distinct microbiome decontamination pipelines with guidance on which to select based on the downstream goals of the research study and study design. This package integrates and expands on existing packages for microbiome decontamination and analysis for convenience of users. Furthermore, micRoclean also implements a filtering loss statistic to quantify the impact of decontamination on the overall covariance structure of the data. In this paper, we demonstrate the utility of micRoclean through implementation on example data, illustrating that micRoclean effectively and intuitively decontaminates microbiome data. Further, we demonstrate through a multi-batch simulated microbiome sample that micRoclean matches or outperforms tools with similar objectives. This package is freely available from GitHub repository rachelgriffard/micRoclean.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1556361"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1556361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In 16S-rRNA microbiome studies, cross-contamination and environmental contamination can obscure true biological signal. This contamination is particularly problematic in low-biomass studies, which are characterized by samples with a small amount of microbial DNA. Although multiple methods and packages for decontaminating microbiome data exist, there is no consensus on the most appropriate tool for decontamination based on the individual research study design and how to quantify the impact of removing identified contaminants to avoid over-filtering. To address these gaps, we introduce micRoclean, an open-source R package that contains two distinct microbiome decontamination pipelines with guidance on which to select based on the downstream goals of the research study and study design. This package integrates and expands on existing packages for microbiome decontamination and analysis for convenience of users. Furthermore, micRoclean also implements a filtering loss statistic to quantify the impact of decontamination on the overall covariance structure of the data. In this paper, we demonstrate the utility of micRoclean through implementation on example data, illustrating that micRoclean effectively and intuitively decontaminates microbiome data. Further, we demonstrate through a multi-batch simulated microbiome sample that micRoclean matches or outperforms tools with similar objectives. This package is freely available from GitHub repository rachelgriffard/micRoclean.

micRoclean:用于净化低生物量16S-rRNA微生物组数据的R包。
在16S-rRNA微生物组研究中,交叉污染和环境污染会掩盖真实的生物信号。这种污染在低生物量研究中尤其成问题,因为低生物量研究的特点是样品中含有少量微生物DNA。尽管存在多种净化微生物组数据的方法和包装,但基于个人研究设计的最合适的净化工具以及如何量化去除已识别污染物以避免过度过滤的影响尚无共识。为了解决这些差距,我们引入了micRoclean,这是一个开源R包,包含两个不同的微生物组净化管道,并根据研究研究和研究设计的下游目标指导选择。该软件包集成并扩展了现有的微生物组净化和分析软件包,以方便用户。此外,micRoclean还实现了过滤损失统计,以量化去污对数据整体协方差结构的影响。在本文中,我们通过对示例数据的实现来演示micRoclean的实用性,说明micRoclean可以有效且直观地净化微生物组数据。此外,我们通过多批次模拟微生物组样本证明,micRoclean匹配或优于具有类似目标的工具。这个包可以从GitHub存储库rachelgriffard/micRoclean免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信