{"title":"MutSgamma promotes meiotic recombination and homolog pairing in mouse spermatocytes.","authors":"Melissa Frasca, Lakshmi Paniker, Rhea Kang, Parijat Chakraborty, Aastha Pandey, Jessica LoPresti, Francesca Cole","doi":"10.1093/genetics/iyaf099","DOIUrl":null,"url":null,"abstract":"<p><p>DNA repair by homologous recombination is required for parental chromosomes (homologs) to accurately segregate during mammalian meiosis. Meiotic recombination promotes but also relies upon pairing between homologs. This mutual dependence and the differential reliance between recombination and pairing in well-studied organisms has been difficult to deconstruct in the mammalian context. In budding yeast, MutSgamma, a heterodimer between MSH4 and MSH5 promotes crossover-specific recombination by protecting precursors, and in many organisms plays roles in pairing and synaptonemal complex formation. We use recombination and cytological assays to infer the role of MutSgamma in mouse spermatocytes. We find in two alleles of Msh5 - a null and one bearing a mutation in its ATPase domain, that spermatocytes are severely compromised for recombination producing only a small fraction of noncrossovers. However, they are more proficient in interhomolog pairing particularly on the longer chromosomes than spermatocytes lacking meiotic recombination entirely. We propose MutSgamma plays an earlier role in mouse than in budding yeast to stabilize D-loops upstream of all interhomolog recombination. Further, that nascent recombination interactions can promote successful interhomolog pairing despite not completing recombination.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf099","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA repair by homologous recombination is required for parental chromosomes (homologs) to accurately segregate during mammalian meiosis. Meiotic recombination promotes but also relies upon pairing between homologs. This mutual dependence and the differential reliance between recombination and pairing in well-studied organisms has been difficult to deconstruct in the mammalian context. In budding yeast, MutSgamma, a heterodimer between MSH4 and MSH5 promotes crossover-specific recombination by protecting precursors, and in many organisms plays roles in pairing and synaptonemal complex formation. We use recombination and cytological assays to infer the role of MutSgamma in mouse spermatocytes. We find in two alleles of Msh5 - a null and one bearing a mutation in its ATPase domain, that spermatocytes are severely compromised for recombination producing only a small fraction of noncrossovers. However, they are more proficient in interhomolog pairing particularly on the longer chromosomes than spermatocytes lacking meiotic recombination entirely. We propose MutSgamma plays an earlier role in mouse than in budding yeast to stabilize D-loops upstream of all interhomolog recombination. Further, that nascent recombination interactions can promote successful interhomolog pairing despite not completing recombination.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.