{"title":"Comparing regression-based approaches for identifying microbial functional groups.","authors":"Fang Yu, Mikhail Tikhonov","doi":"10.1088/1478-3975/addc2a","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities are composed of functionally integrated taxa, and identifying which taxa contribute to a given ecosystem function is essential for predicting community behaviors. This study compares the effectiveness of a previously proposed method for identifying 'functional taxa,' ensemble quotient optimization (EQO), to a potentially simpler approach based on the least absolute shrinkage and selection operator (LASSO). In contrast to LASSO, EQO uses a binary prior on coefficients, assuming uniform contribution strength across taxa. Using synthetic datasets with increasingly realistic structure, we demonstrate that EQO's strong prior enables it to perform better in low-data regime. However, LASSO's flexibility and efficiency can make it preferable as data complexity increases. Our results detail the favorable conditions for EQO and emphasize LASSO as a viable alternative.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/addc2a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial communities are composed of functionally integrated taxa, and identifying which taxa contribute to a given ecosystem function is essential for predicting community behaviors. This study compares the effectiveness of a previously proposed method for identifying 'functional taxa,' ensemble quotient optimization (EQO), to a potentially simpler approach based on the least absolute shrinkage and selection operator (LASSO). In contrast to LASSO, EQO uses a binary prior on coefficients, assuming uniform contribution strength across taxa. Using synthetic datasets with increasingly realistic structure, we demonstrate that EQO's strong prior enables it to perform better in low-data regime. However, LASSO's flexibility and efficiency can make it preferable as data complexity increases. Our results detail the favorable conditions for EQO and emphasize LASSO as a viable alternative.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.