Acetate derived from metabolism of ethanol affects gene expression in bone and contributes to delays in chondrogenic differentiation.

IF 3.4 3区 医学 Q2 TOXICOLOGY
Kim B Pedersen, Cheyleann Del Valle Ponce De Leon, Hardy Hang, Jin-Ran Chen, Christopher E Randolph, Jovanny Zabaleta, Christopher M Taylor, Meng Luo, Alexandra Denys, Martin J J Ronis
{"title":"Acetate derived from metabolism of ethanol affects gene expression in bone and contributes to delays in chondrogenic differentiation.","authors":"Kim B Pedersen, Cheyleann Del Valle Ponce De Leon, Hardy Hang, Jin-Ran Chen, Christopher E Randolph, Jovanny Zabaleta, Christopher M Taylor, Meng Luo, Alexandra Denys, Martin J J Ronis","doi":"10.1093/toxsci/kfaf073","DOIUrl":null,"url":null,"abstract":"<p><p>Alcohol intake is a risk factor for development of osteopenia. Ethanol perturbs gene expression in osteoblasts and osteoclasts and disrupts growth plate morphology. Hepatic metabolism of ethanol to acetate elevates concentrations of acetate in the circulation. We investigated whether acetate could in part mediate the toxicity of ethanol in bone and on chondrocyte differentiation. When ethanol and acetate were compared by gavage for four consecutive days, none of eleven genes involved in bone homeostasis were significantly affected by acetate, but acetate responses significantly correlated with ethanol responses. Intraperitoneal injection with acetate to transiently elevate serum acetate for four consecutive days significantly increased expression of two markers of osteoclast differentiation, calcitonin receptor (Calcr) and Ocstamp. Early chondrogenic differentiation of ATDC5 cells for 7 days in vitro characterized by aggrecan (Acan) and collagen 2a1 (Col2a1) mRNA expression and proteoglycan production was inhibited by both 50 mM ethanol and 5 mM acetate. Ethanol effects were not blocked by the alcohol dehydrogenase inhibitor 4-methylpyrazole. 50 mM ethanol retarded both ATDC5 cell growth and culture medium acidification. Inhibition of chondrogenic differentiation by 5 mM acetate was associated with elevated phosphorylation of ERK1 and ERK2 and decreased expression of transcription factors Sox9 and Runx2. In acetate-exposed cells, blocking of ERK1 and ERK2 phosphorylation with Trametinib prevented further reduction of Acan and Col2a1 mRNA expression. We conclude that ethanol-derived acetate mediates at least part of the induction of Calcr and Ocstamp expression, and that acetate mimics effects of ethanol on early chondrogenic differentiation.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alcohol intake is a risk factor for development of osteopenia. Ethanol perturbs gene expression in osteoblasts and osteoclasts and disrupts growth plate morphology. Hepatic metabolism of ethanol to acetate elevates concentrations of acetate in the circulation. We investigated whether acetate could in part mediate the toxicity of ethanol in bone and on chondrocyte differentiation. When ethanol and acetate were compared by gavage for four consecutive days, none of eleven genes involved in bone homeostasis were significantly affected by acetate, but acetate responses significantly correlated with ethanol responses. Intraperitoneal injection with acetate to transiently elevate serum acetate for four consecutive days significantly increased expression of two markers of osteoclast differentiation, calcitonin receptor (Calcr) and Ocstamp. Early chondrogenic differentiation of ATDC5 cells for 7 days in vitro characterized by aggrecan (Acan) and collagen 2a1 (Col2a1) mRNA expression and proteoglycan production was inhibited by both 50 mM ethanol and 5 mM acetate. Ethanol effects were not blocked by the alcohol dehydrogenase inhibitor 4-methylpyrazole. 50 mM ethanol retarded both ATDC5 cell growth and culture medium acidification. Inhibition of chondrogenic differentiation by 5 mM acetate was associated with elevated phosphorylation of ERK1 and ERK2 and decreased expression of transcription factors Sox9 and Runx2. In acetate-exposed cells, blocking of ERK1 and ERK2 phosphorylation with Trametinib prevented further reduction of Acan and Col2a1 mRNA expression. We conclude that ethanol-derived acetate mediates at least part of the induction of Calcr and Ocstamp expression, and that acetate mimics effects of ethanol on early chondrogenic differentiation.

乙醇代谢产生的醋酸酯影响骨中的基因表达,并有助于延缓软骨分化。
饮酒是骨质减少的一个危险因素。乙醇干扰成骨细胞和破骨细胞的基因表达,破坏生长板形态。乙醇转化为乙酸的肝脏代谢提高了循环中乙酸的浓度。我们研究了乙酸是否能部分介导乙醇对骨的毒性和软骨细胞分化。当连续灌胃4天比较乙醇和乙酸时,11个参与骨稳态的基因都没有受到乙酸的显著影响,但乙酸的反应与乙醇的反应显著相关。连续4天腹腔注射醋酸酯短暂升高血清醋酸酯,可显著增加破骨细胞分化标志物降钙素受体(Calcr)和Ocstamp的表达。50 mM乙醇和5 mM醋酸盐均可抑制ATDC5细胞体外7天的早期软骨分化(聚集蛋白(Acan)和胶原蛋白2a1 (Col2a1) mRNA表达)。乙醇作用不受乙醇脱氢酶抑制剂4-甲基吡唑的抑制。50mm乙醇对ATDC5细胞生长和培养基酸化均有抑制作用。5 mM醋酸酯抑制软骨分化与ERK1和ERK2磷酸化升高以及转录因子Sox9和Runx2表达降低有关。在暴露于醋酸盐的细胞中,用曲美替尼阻断ERK1和ERK2磷酸化可阻止Acan和Col2a1 mRNA表达的进一步降低。我们得出结论,乙醇衍生的醋酸盐介导了Calcr和Ocstamp表达的至少部分诱导,并且醋酸盐模拟了乙醇对早期软骨分化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信