Luis Pedro Bernardi, Thomas Hugentobler Schlickmann, Giovanna Carello-Collar, Marco Antonio De Bastiani, Eduardo Rigon Zimmer, Elizandra Braganhol, Francieli Rohden, Diogo Onofre Souza
{"title":"Microglial Responses to MSC-EVs Treatment in Animal and Cellular Models of Ischemic Stroke: a Systematic Review with Meta-analysis.","authors":"Luis Pedro Bernardi, Thomas Hugentobler Schlickmann, Giovanna Carello-Collar, Marco Antonio De Bastiani, Eduardo Rigon Zimmer, Elizandra Braganhol, Francieli Rohden, Diogo Onofre Souza","doi":"10.1007/s12035-025-05025-x","DOIUrl":null,"url":null,"abstract":"<p><p>The modulation of microglial reactivity has emerged as a potential target for developing ischemic stroke therapies. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) possess immunomodulatory properties that may influence microglial responses following ischemia. However, individual studies assessing this influence have provided limited results. Therefore, we conducted a systematic review and meta-analysis to investigate whether MSC-EVs treatment alters microglial responses in animal and cellular models of ischemic stroke. In accordance with the PRISMA 2020 statement, we searched PubMed, Web of Science, and EMBASE until January 2025 for studies assessing cellular and molecular parameters of microglial reactivity following MSC-EVs treatment in models of ischemic stroke. We estimated treatment effects using a random-effects meta-analysis of standardized mean differences and estimated heterogeneity via the I<sup>2</sup> statistic. The risk of bias was assessed using the SYRCLE questionnaire. The search identified 386 studies, 35 of which met the inclusion criteria. In animal models, MSC-EVs reduced the number, surface area, and fluorescence intensity of Iba1<sup>+</sup> cells, as well as the number of Iba1<sup>+</sup> cells co-expressing the pro-inflammatory markers CD16, CD32, CD85, and iNOS. Conversely, MSC-EVs increased the number of Iba1<sup>+</sup> cells co-expressing the anti-inflammatory markers Arg-1 and CD206. In cellular models, we observed decreased concentrations of TNF-α, IL-1β, and IL-6 in the culture medium. Our meta-analysis consolidates the immunomodulatory effects of MSC-EVs on microglial responses to ischemia, underscoring the potential of microglia-specific therapeutics in the development of MSC-EVs-based and regenerative treatments for ischemic stroke.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"14834-14857"},"PeriodicalIF":4.3000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05025-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The modulation of microglial reactivity has emerged as a potential target for developing ischemic stroke therapies. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) possess immunomodulatory properties that may influence microglial responses following ischemia. However, individual studies assessing this influence have provided limited results. Therefore, we conducted a systematic review and meta-analysis to investigate whether MSC-EVs treatment alters microglial responses in animal and cellular models of ischemic stroke. In accordance with the PRISMA 2020 statement, we searched PubMed, Web of Science, and EMBASE until January 2025 for studies assessing cellular and molecular parameters of microglial reactivity following MSC-EVs treatment in models of ischemic stroke. We estimated treatment effects using a random-effects meta-analysis of standardized mean differences and estimated heterogeneity via the I2 statistic. The risk of bias was assessed using the SYRCLE questionnaire. The search identified 386 studies, 35 of which met the inclusion criteria. In animal models, MSC-EVs reduced the number, surface area, and fluorescence intensity of Iba1+ cells, as well as the number of Iba1+ cells co-expressing the pro-inflammatory markers CD16, CD32, CD85, and iNOS. Conversely, MSC-EVs increased the number of Iba1+ cells co-expressing the anti-inflammatory markers Arg-1 and CD206. In cellular models, we observed decreased concentrations of TNF-α, IL-1β, and IL-6 in the culture medium. Our meta-analysis consolidates the immunomodulatory effects of MSC-EVs on microglial responses to ischemia, underscoring the potential of microglia-specific therapeutics in the development of MSC-EVs-based and regenerative treatments for ischemic stroke.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.