Tuo Liu, Xuan Zhang, Xiuzhu Ma, Shuang Chen, Xuejuan Wang, Ping Zhou, Yang Chen, Guangquan Zhou, Faqin Lv
{"title":"DAM: Degradation-aware Model for Ultrasound Image Quality Assessment.","authors":"Tuo Liu, Xuan Zhang, Xiuzhu Ma, Shuang Chen, Xuejuan Wang, Ping Zhou, Yang Chen, Guangquan Zhou, Faqin Lv","doi":"10.1109/JBHI.2025.3572459","DOIUrl":null,"url":null,"abstract":"<p><p>One of the core challenges in ultrasound image quality assessment (IQA) is the entanglement of semantic content and quality-related information, such as blurring and shadows. Insufficient attention to the latter can easily lead to biased IQA results. Furthermore, fine-grained quality inconsistencies, i.e., subtle variations in ultrasound images that can impact quality interpretations, may further complicate the IQA tasks. To address these challenges, we propose a novel degradation-aware model (DAM) for the ultrasound IQA, which effectively perceives various and subtle variations of quality patterns, accurately assessing the quality of ultrasound images. The advanced degradation-derived augmentation (DDA) in DAM incorporates degradations that clinicians may focus on during IQA into the synthesis of appearance changes, promoting the disentanglement of quality-related representations from semantic contents. Subsequently, we present fine-grained degradation learning (FGDL), which encourages distinctions between image versions with diminishing quality inconsistencies, boosting the awareness of quality nuances from easy to hard for better ultrasound IQA performance. A universal boundary acquisition operator (UBAO) is also developed to suppress interferences from redundant information, achieving the standardization of ultrasound images from various devices. Extensive experimental results on an in-house ultrasound dataset demonstrate that DAM outperforms 14 baseline methods, achieving a PLCC of 0.760 and an SROCC of 0.766. The code can be available at this URL.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3572459","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the core challenges in ultrasound image quality assessment (IQA) is the entanglement of semantic content and quality-related information, such as blurring and shadows. Insufficient attention to the latter can easily lead to biased IQA results. Furthermore, fine-grained quality inconsistencies, i.e., subtle variations in ultrasound images that can impact quality interpretations, may further complicate the IQA tasks. To address these challenges, we propose a novel degradation-aware model (DAM) for the ultrasound IQA, which effectively perceives various and subtle variations of quality patterns, accurately assessing the quality of ultrasound images. The advanced degradation-derived augmentation (DDA) in DAM incorporates degradations that clinicians may focus on during IQA into the synthesis of appearance changes, promoting the disentanglement of quality-related representations from semantic contents. Subsequently, we present fine-grained degradation learning (FGDL), which encourages distinctions between image versions with diminishing quality inconsistencies, boosting the awareness of quality nuances from easy to hard for better ultrasound IQA performance. A universal boundary acquisition operator (UBAO) is also developed to suppress interferences from redundant information, achieving the standardization of ultrasound images from various devices. Extensive experimental results on an in-house ultrasound dataset demonstrate that DAM outperforms 14 baseline methods, achieving a PLCC of 0.760 and an SROCC of 0.766. The code can be available at this URL.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.