Mammary leukocytes function of endotoxin tolerant goat induced by intrauterine infusion of lipopolysaccharide.

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Innate Immunity Pub Date : 2025-01-01 Epub Date: 2025-05-23 DOI:10.1177/17534259251341659
Jirapat Jaisue, Naoki Suzuki, Takahiro Nii, Naoki Isobe
{"title":"Mammary leukocytes function of endotoxin tolerant goat induced by intrauterine infusion of lipopolysaccharide.","authors":"Jirapat Jaisue, Naoki Suzuki, Takahiro Nii, Naoki Isobe","doi":"10.1177/17534259251341659","DOIUrl":null,"url":null,"abstract":"<p><p>A previous study found that repeated intrauterine infusions of lipopolysaccharide (LPS) followed by an LPS infusion into the mammary glands attenuated the mammary inflammatory response. This suggests that repeated LPS infusion into the uterus promotes endotoxin tolerance (ET) in the mammary gland. However, the specific changes in mammary glands under ET conditions remain unclear. We hypothesized that ET affects leukocyte function in milk. This study aimed to investigate leukocyte function in milk under ET conditions induced through repeated LPS infusions into the uterus for three days followed by LPS infusion into the mammary glands of goats. Goats in the IU group (n = 17) received an infusion of 100 μg LPS in 5 ml saline into the uterus for three consecutive days (d -3, -2, and -1), whereas the goats in the control group did not receive this infusion (n = 19). On d 0, 1 μg LPS in 5 ml saline was infused into the mammary glands of both groups. Milk was collected 0, 4, 8, 12, 24, 48, 72, and 120 h after LPS intramammary infusion. The IU group decreased cytokine production (interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-1Ra) in milk following intramammary LPS infusion. Moreover, leukocyte activation, measured by phagocytic activity and CD11b expression, was higher in the IU group than in the control group. These findings suggest that goats exhibit enhanced leukocyte function in mammary glands under ET conditions, induced by repeated intrauterine infusion of LPS.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":"31 ","pages":"17534259251341659"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259251341659","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A previous study found that repeated intrauterine infusions of lipopolysaccharide (LPS) followed by an LPS infusion into the mammary glands attenuated the mammary inflammatory response. This suggests that repeated LPS infusion into the uterus promotes endotoxin tolerance (ET) in the mammary gland. However, the specific changes in mammary glands under ET conditions remain unclear. We hypothesized that ET affects leukocyte function in milk. This study aimed to investigate leukocyte function in milk under ET conditions induced through repeated LPS infusions into the uterus for three days followed by LPS infusion into the mammary glands of goats. Goats in the IU group (n = 17) received an infusion of 100 μg LPS in 5 ml saline into the uterus for three consecutive days (d -3, -2, and -1), whereas the goats in the control group did not receive this infusion (n = 19). On d 0, 1 μg LPS in 5 ml saline was infused into the mammary glands of both groups. Milk was collected 0, 4, 8, 12, 24, 48, 72, and 120 h after LPS intramammary infusion. The IU group decreased cytokine production (interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-1Ra) in milk following intramammary LPS infusion. Moreover, leukocyte activation, measured by phagocytic activity and CD11b expression, was higher in the IU group than in the control group. These findings suggest that goats exhibit enhanced leukocyte function in mammary glands under ET conditions, induced by repeated intrauterine infusion of LPS.

内毒素耐受山羊宫内输注脂多糖对乳腺白细胞功能的影响。
先前的一项研究发现,反复宫内输注脂多糖(LPS),然后将脂多糖输注到乳腺中,可减轻乳腺炎症反应。这表明子宫内反复灌注LPS可促进乳腺内毒素耐受(ET)。然而,ET条件下乳腺的具体变化尚不清楚。我们假设ET影响牛奶中的白细胞功能。本研究通过在子宫内反复灌注LPS,再在乳腺内灌注LPS,观察体外培养条件下羊乳中白细胞的功能。IU组山羊(n = 17)连续3天(d - 3,2和-1)在子宫内注射100 μg LPS (5 ml生理盐水),对照组山羊(n = 19)不注射。在第0天,两组小鼠乳腺内注射1 μg LPS,溶液为5 ml生理盐水。在LPS乳内灌注后0、4、8、12、24、48、72和120 h采集乳汁。IU组降低乳内脂多糖输注后乳中细胞因子(白细胞介素(IL)-1β、肿瘤坏死因子(TNF)-α和IL- 1ra)的产生。此外,白细胞活化(通过吞噬活性和CD11b表达来测量)在IU组高于对照组。这些发现表明,在ET条件下,反复宫内灌注LPS诱导山羊乳腺白细胞功能增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Innate Immunity
Innate Immunity 生物-免疫学
CiteScore
7.20
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信