Serin Hong, Byung Soo Kong, Hyunsuk Lee, Young Min Cho
{"title":"Anti-Senescence Effect of Inhibiting Sodium-Glucose Cotransporter 2 and α-Glucosidase in a Type 2 Diabetes Mellitus Animal Model.","authors":"Serin Hong, Byung Soo Kong, Hyunsuk Lee, Young Min Cho","doi":"10.4093/dmj.2024.0339","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prevalence of type 2 diabetes mellitus (T2DM) increases with age, and cellular senescence of pancreatic β-cells plays a key role in T2DM pathogenesis. As canagliflozin and acarbose have been shown to increase lifespan in mice, we investigated the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, α-glucosidase inhibitor or both on the cellular senescence of β-cells in a T2DM mouse model.</p><p><strong>Methods: </strong>Enavogliflozin (0.3 mg/kg), acarbose (10 mg/kg), or vehicle was orally administered daily to db/db mice for 6 weeks. The levels of senescence markers (p16, p21, and p53) in the pancreas and kidney were measured through real-time polymerase chain reaction (PCR), immunofluorescence staining, and Western blot. In an in vitro analysis, isolated pancreatic islets were exposed to H2O2 to induce cellular senescence, then treated with β-hydroxybutyrate (β-HB), and subsequently assessed for levels of senescent markers.</p><p><strong>Results: </strong>Enavogliflozin alone or combined with acarbose effectively lowered blood glucose levels in db/db mice. The combined treatment resulted in the greatest increase in β-cell function calculated using insulinogenic index and homeostasis model assessment of β-cell function compared to the vehicle. Additionally, the combined treatment significantly reversed the increase in p16, with a similar trend observed in p21 and p53 in the islets. Treatment increased circulating β-HB and in vitro analysis suggested the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by β-HB in reducing senescence in the islets.</p><p><strong>Conclusion: </strong>The combined administration of enavogliflozin and acarbose significantly reduced blood glucose, improved β-cell function, and reduced senescent β-cells in db/db mice. This combination therapy holds potential as a senotherapeutic strategy for managing T2DM.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2024.0339","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The prevalence of type 2 diabetes mellitus (T2DM) increases with age, and cellular senescence of pancreatic β-cells plays a key role in T2DM pathogenesis. As canagliflozin and acarbose have been shown to increase lifespan in mice, we investigated the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, α-glucosidase inhibitor or both on the cellular senescence of β-cells in a T2DM mouse model.
Methods: Enavogliflozin (0.3 mg/kg), acarbose (10 mg/kg), or vehicle was orally administered daily to db/db mice for 6 weeks. The levels of senescence markers (p16, p21, and p53) in the pancreas and kidney were measured through real-time polymerase chain reaction (PCR), immunofluorescence staining, and Western blot. In an in vitro analysis, isolated pancreatic islets were exposed to H2O2 to induce cellular senescence, then treated with β-hydroxybutyrate (β-HB), and subsequently assessed for levels of senescent markers.
Results: Enavogliflozin alone or combined with acarbose effectively lowered blood glucose levels in db/db mice. The combined treatment resulted in the greatest increase in β-cell function calculated using insulinogenic index and homeostasis model assessment of β-cell function compared to the vehicle. Additionally, the combined treatment significantly reversed the increase in p16, with a similar trend observed in p21 and p53 in the islets. Treatment increased circulating β-HB and in vitro analysis suggested the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by β-HB in reducing senescence in the islets.
Conclusion: The combined administration of enavogliflozin and acarbose significantly reduced blood glucose, improved β-cell function, and reduced senescent β-cells in db/db mice. This combination therapy holds potential as a senotherapeutic strategy for managing T2DM.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.