StereoMM: a graph fusion model for integrating spatial transcriptomic data and pathological images.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Bingying Luo, Fei Teng, Guo Tang, Weixuan Cen, Xing Liu, Jinmiao Chen, Chi Qu, Xuanzhu Liu, Xin Liu, Wenyan Jiang, Huaqiang Huang, Yu Feng, Xue Zhang, Min Jian, Mei Li, Feng Xi, Guibo Li, Sha Liao, Ao Chen, Weimiao Yu, Xun Xu, Jiajun Zhang
{"title":"StereoMM: a graph fusion model for integrating spatial transcriptomic data and pathological images.","authors":"Bingying Luo, Fei Teng, Guo Tang, Weixuan Cen, Xing Liu, Jinmiao Chen, Chi Qu, Xuanzhu Liu, Xin Liu, Wenyan Jiang, Huaqiang Huang, Yu Feng, Xue Zhang, Min Jian, Mei Li, Feng Xi, Guibo Li, Sha Liao, Ao Chen, Weimiao Yu, Xun Xu, Jiajun Zhang","doi":"10.1093/bib/bbaf210","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial omics technologies, generating high-throughput and multimodal data, have necessitated the development of advanced data integration methods to facilitate comprehensive biological and clinical treatment discoveries. Based on the cross-attention concept, we developed an AI learning based toolchain called StereoMM, a graph based fusion model that can incorporate omics data such as gene expression, histological images, and spatial location. StereoMM uses an attention module for omics data interaction and a graph autoencoder to integrate spatial positions and omics data in a self-supervised manner. Applying StereoMM across various cancer types and platforms has demonstrated its robust capability. StereoMM outperforms competitors in identifying spatial regions reflecting tumour progression and shows promise in classifying colorectal cancer patients into deficient mismatch repair and proficient mismatch repair groups. The comprehensive inter-modal integration and efficiency of StereoMM enable researchers to construct spatial views of integrated multimodal features efficiently, advancing thorough tissue and patient characterization.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf210","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial omics technologies, generating high-throughput and multimodal data, have necessitated the development of advanced data integration methods to facilitate comprehensive biological and clinical treatment discoveries. Based on the cross-attention concept, we developed an AI learning based toolchain called StereoMM, a graph based fusion model that can incorporate omics data such as gene expression, histological images, and spatial location. StereoMM uses an attention module for omics data interaction and a graph autoencoder to integrate spatial positions and omics data in a self-supervised manner. Applying StereoMM across various cancer types and platforms has demonstrated its robust capability. StereoMM outperforms competitors in identifying spatial regions reflecting tumour progression and shows promise in classifying colorectal cancer patients into deficient mismatch repair and proficient mismatch repair groups. The comprehensive inter-modal integration and efficiency of StereoMM enable researchers to construct spatial views of integrated multimodal features efficiently, advancing thorough tissue and patient characterization.

StereoMM:用于整合空间转录组数据和病理图像的图形融合模型。
空间组学技术产生高通量和多模式数据,需要开发先进的数据集成方法,以促进全面的生物学和临床治疗发现。基于交叉注意概念,我们开发了一个基于人工智能学习的工具链,名为StereoMM,这是一个基于图形的融合模型,可以整合基因表达、组织学图像和空间位置等组学数据。StereoMM使用注意力模块进行组学数据交互,并使用图形自编码器以自监督的方式集成空间位置和组学数据。StereoMM在各种癌症类型和平台上的应用已经证明了它的强大功能。StereoMM在识别反映肿瘤进展的空间区域方面优于竞争对手,并有望将结直肠癌患者分为缺陷错配修复组和熟练错配修复组。StereoMM的综合多模态集成和效率使研究人员能够高效地构建集成多模态特征的空间视图,推进组织和患者的全面表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信