mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fangyu Mo, Qinghong Qian, Xiaolin Lu, Dihuai Zheng, Wenjie Cai, Jie Yao, Hongyu Chen, Yujie Huang, Xiang Zhang, Sanling Wu, Yifei Shen, Yinqi Bai, Yongcheng Wang, Weiqin Jiang, Longjiang Fan
{"title":"mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data.","authors":"Fangyu Mo, Qinghong Qian, Xiaolin Lu, Dihuai Zheng, Wenjie Cai, Jie Yao, Hongyu Chen, Yujie Huang, Xiang Zhang, Sanling Wu, Yifei Shen, Yinqi Bai, Yongcheng Wang, Weiqin Jiang, Longjiang Fan","doi":"10.1093/bib/bbaf227","DOIUrl":null,"url":null,"abstract":"<p><p>The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.

mKmer:一种无偏K-mer包埋微生物组单微生物RNA测序数据。
先进的单微生物RNA测序(smRNA-seq)技术解决了迫切需要了解微生物群落的复杂性和多样性,以及不同基因表达谱所定义的不同微生物状态。目前对smRNA-seq数据的分析严重依赖于所查询微生物群内参考基因组的完整性。然而,对于大多数现实世界的微生物生态系统来说,建立一个全面的微生物参考基因组或基因集仍然是一个重大挑战。在这里,我们开发了一种利用K-mer特征的无偏嵌入算法,命名为mKmer,它绕过基因或基因组比对,使个体微生物的物种鉴定和下游功能富集分析成为可能。通过将典型细胞-基因矩阵中的基因特征替换为高度保守的K-mers,我们证明mKmer在使用来自作物土壤和人类肠道微生物组的基准数据集进行聚类和基序推断任务时优于基于基因的方法。我们的方法为推进smRNA-seq研究提供了一个参考的无基因组分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信