Validation of new AI-based classification method for in silico cardiac safety assessment of drugs following the CiPA framework.

IF 4.8 2区 医学 Q1 TOXICOLOGY
Ulfa Latifa Hanum, Ali Ikhsanul Qauli, Yunendah Nur Fuadah, Rahmafatin Nurul Izza, Ki Moo Lim
{"title":"Validation of new AI-based classification method for in silico cardiac safety assessment of drugs following the CiPA framework.","authors":"Ulfa Latifa Hanum, Ali Ikhsanul Qauli, Yunendah Nur Fuadah, Rahmafatin Nurul Izza, Ki Moo Lim","doi":"10.1007/s00204-025-04079-z","DOIUrl":null,"url":null,"abstract":"<p><p>The comprehensive in vitro proarrhythmia assay (CiPA) has paved the way for integrating in silico trials into drug evaluation processes. In alignment, the International Council for Harmonization (ICH) has initiated efforts to update the ICH S7B and E14 guidelines through a structured Questions and Answers (Q&A) format. A significant challenge in this paradigm is ensuring consistent application and evaluation of diverse proarrhythmia risk prediction models across experimental systems. This study utilized the CiPAORdv1.0 model to predict cardiac toxicity, leveraging in vitro data from 28 drugs for training and validation. A modified O'Hara-Rudy model simulated a virtual population of human ventricular cell models. Seven critical features (qNet, APD50, APD90, Camax, Carest, CaTD50, CaTD90) were extracted as inputs for analysis. CiPAORdv1.0 demonstrated robust performance, achieving predictive accuracies with an area under the curve (AUC) of 1.0 for high risk and 0.95 for low-risk categories. The calibration process was enhanced using normalized Euclidean distances (R1 and R2), effectively distinguishing risk categories. Sensitivity analysis identified key drugs, ensuring a strong calibration drug set to anchor model predictions. The proposed ANN model validated the CiPAORdv1.0 framework as an effective TdP-risk prediction system, ensuring robust and lab-specific validation. This study presents a novel algorithm leveraging artificial neural networks to implement validated cardiac safety models, addressing a critical need for standardized proarrhythmia risk assessment in drug development.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04079-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The comprehensive in vitro proarrhythmia assay (CiPA) has paved the way for integrating in silico trials into drug evaluation processes. In alignment, the International Council for Harmonization (ICH) has initiated efforts to update the ICH S7B and E14 guidelines through a structured Questions and Answers (Q&A) format. A significant challenge in this paradigm is ensuring consistent application and evaluation of diverse proarrhythmia risk prediction models across experimental systems. This study utilized the CiPAORdv1.0 model to predict cardiac toxicity, leveraging in vitro data from 28 drugs for training and validation. A modified O'Hara-Rudy model simulated a virtual population of human ventricular cell models. Seven critical features (qNet, APD50, APD90, Camax, Carest, CaTD50, CaTD90) were extracted as inputs for analysis. CiPAORdv1.0 demonstrated robust performance, achieving predictive accuracies with an area under the curve (AUC) of 1.0 for high risk and 0.95 for low-risk categories. The calibration process was enhanced using normalized Euclidean distances (R1 and R2), effectively distinguishing risk categories. Sensitivity analysis identified key drugs, ensuring a strong calibration drug set to anchor model predictions. The proposed ANN model validated the CiPAORdv1.0 framework as an effective TdP-risk prediction system, ensuring robust and lab-specific validation. This study presents a novel algorithm leveraging artificial neural networks to implement validated cardiac safety models, addressing a critical need for standardized proarrhythmia risk assessment in drug development.

在CiPA框架下,新的基于人工智能的药物心脏安全性计算机评估分类方法的验证。
全面的体外心律失常原测定(CiPA)为将计算机试验整合到药物评估过程中铺平了道路。为此,国际协调委员会(ICH)已开始努力通过结构化问答(Q&A)格式更新ICH S7B和E14指南。这种模式的一个重大挑战是确保跨实验系统的各种心律失常风险预测模型的一致应用和评估。本研究利用CiPAORdv1.0模型预测心脏毒性,利用28种药物的体外数据进行训练和验证。一个改进的O'Hara-Rudy模型模拟了人类心室细胞模型的虚拟种群。提取7个关键特征(qNet、APD50、APD90、Camax、Carest、CaTD50、CaTD90)作为输入进行分析。CiPAORdv1.0表现出稳健的性能,在高风险和低风险类别中实现了曲线下面积(AUC)为1.0和0.95的预测精度。使用归一化欧氏距离(R1和R2)加强校准过程,有效区分风险类别。敏感性分析确定了关键药物,确保了强大的校准药物集来锚定模型预测。所提出的人工神经网络模型验证了CiPAORdv1.0框架是一个有效的tdp风险预测系统,确保了鲁棒性和实验室特异性验证。本研究提出了一种利用人工神经网络实现经过验证的心脏安全模型的新算法,解决了药物开发中标准化心律失常风险评估的关键需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信