{"title":"Enhancing boundary accuracy in semantic segmentation of chest x-ray images using gaussian process regression.","authors":"Batoul Aljaddouh, D Malathi","doi":"10.1088/2057-1976/addbe9","DOIUrl":null,"url":null,"abstract":"<p><p>This research aims to enhance x-ray lung segmentation by addressing boundary distortions in anatomical structures, with the objective of refining segmentation boundaries and improving the morphological shape of segmented objects. The proposed approach combines the K-segment principal curve with Gaussian Process Regression (GPR) to refine segmentation boundaries, evaluated using lung x-ray datasets at varying resolutions. Several state-of-the-art models, including U-Net, SegNet, and TransUnet, were also assessed for comparison. The model employed a custom kernel for GPR, combining Radial Basis Function (RBF) with a cosine similarity term. The effectiveness of the model was evaluated using metrics such as the Dice Coefficient (DC) and Jaccard Index (JC) for segmentation accuracy, along with Average Symmetric Surface Distance (ASSD) and Hausdorff Distance (HD) for boundary alignment. The proposed method achieved superior segmentation performance, particularly at the highest resolution (1024 × 1024 pixels), with a DC of 95.7% for the left lung and 94.1% for the right lung. Among the different models, TransUnet outperformed others across both the semantic segmentation and boundary refinement stages, showing significant improvements in DC, JC, ASSD, and HD. The results indicate that the proposed boundary refinement approach effectively improves the segmentation quality of lung x-rays, excelling in refining well-defined structures and achieving superior boundary alignment, showcasing its potential for clinical applications. However, limitations exist when dealing with irregular or unpredictable shapes, suggesting areas for future enhancement.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/addbe9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to enhance x-ray lung segmentation by addressing boundary distortions in anatomical structures, with the objective of refining segmentation boundaries and improving the morphological shape of segmented objects. The proposed approach combines the K-segment principal curve with Gaussian Process Regression (GPR) to refine segmentation boundaries, evaluated using lung x-ray datasets at varying resolutions. Several state-of-the-art models, including U-Net, SegNet, and TransUnet, were also assessed for comparison. The model employed a custom kernel for GPR, combining Radial Basis Function (RBF) with a cosine similarity term. The effectiveness of the model was evaluated using metrics such as the Dice Coefficient (DC) and Jaccard Index (JC) for segmentation accuracy, along with Average Symmetric Surface Distance (ASSD) and Hausdorff Distance (HD) for boundary alignment. The proposed method achieved superior segmentation performance, particularly at the highest resolution (1024 × 1024 pixels), with a DC of 95.7% for the left lung and 94.1% for the right lung. Among the different models, TransUnet outperformed others across both the semantic segmentation and boundary refinement stages, showing significant improvements in DC, JC, ASSD, and HD. The results indicate that the proposed boundary refinement approach effectively improves the segmentation quality of lung x-rays, excelling in refining well-defined structures and achieving superior boundary alignment, showcasing its potential for clinical applications. However, limitations exist when dealing with irregular or unpredictable shapes, suggesting areas for future enhancement.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.