{"title":"Bile Salts Trigger Deformability in Liposomal Vesicles through Edge-Activating Action.","authors":"Deepak Kumar, Sanjay Tiwari","doi":"10.1021/acs.molpharmaceut.5c00129","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates how bile-salt-based edge activators (EAs) (sodium cholate, NaC; sodium deoxycholate, NaDC; and sodium taurocholate, NaTC) can influence the mechanical properties and deformability of liposomal vesicles. We have elucidated their effect on liposomes composed of l-α-phosphatidylcholine (SPC). Liposomes were formulated using thin-film hydration and characterized using scattering, spectroscopic, and atomic force microscopic (AFM) techniques. Our data show that bile salts can alter the hydrodynamic diameter (<i>D</i><sub>h</sub>), morphology, and mechanical characteristics of vesicles. Their effect on the deformability and Young's modulus of vesicles followed the order NaDC ≥ NaC > NaTC. Breakthrough events were noticed in the vesicles at specific depth levels during force-deformation and force-indentation experiments. Based on the lack of hysteresis in the approach-retract curve, we inferred that the vesicles attained elasticity at lower concentrations of NaDC. Hydrophobic interactions between phospholipids and bile salts were verified from Fourier-transformed infrared spectrophotometer (FTIR) experiments. Increase in bile salt concentration was accompanied by a red shift of the acyl chain (asymmetric stretching CH<sub>2</sub> and symmetric stretching CH<sub>3</sub>) and phosphate groups. This shift suggests enhanced hydrogen bonding between liposomes and bile salts. The affinity of bile salts for the SPC molecule correlated with their relative hydrophobicity. We conclude that NaDC can indeed improve the mechanical properties of liposomes and their ability to penetrate biological barriers.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00129","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates how bile-salt-based edge activators (EAs) (sodium cholate, NaC; sodium deoxycholate, NaDC; and sodium taurocholate, NaTC) can influence the mechanical properties and deformability of liposomal vesicles. We have elucidated their effect on liposomes composed of l-α-phosphatidylcholine (SPC). Liposomes were formulated using thin-film hydration and characterized using scattering, spectroscopic, and atomic force microscopic (AFM) techniques. Our data show that bile salts can alter the hydrodynamic diameter (Dh), morphology, and mechanical characteristics of vesicles. Their effect on the deformability and Young's modulus of vesicles followed the order NaDC ≥ NaC > NaTC. Breakthrough events were noticed in the vesicles at specific depth levels during force-deformation and force-indentation experiments. Based on the lack of hysteresis in the approach-retract curve, we inferred that the vesicles attained elasticity at lower concentrations of NaDC. Hydrophobic interactions between phospholipids and bile salts were verified from Fourier-transformed infrared spectrophotometer (FTIR) experiments. Increase in bile salt concentration was accompanied by a red shift of the acyl chain (asymmetric stretching CH2 and symmetric stretching CH3) and phosphate groups. This shift suggests enhanced hydrogen bonding between liposomes and bile salts. The affinity of bile salts for the SPC molecule correlated with their relative hydrophobicity. We conclude that NaDC can indeed improve the mechanical properties of liposomes and their ability to penetrate biological barriers.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.