Nazila Karzad, Samad Rastmanesh, Elham Shaterian, Hamed Shaterian, Ahmad Mobed
{"title":"Nanosensing doxorubicin: a new frontier in medicinal chemistry","authors":"Nazila Karzad, Samad Rastmanesh, Elham Shaterian, Hamed Shaterian, Ahmad Mobed","doi":"10.1007/s00044-025-03421-5","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of nanosensing technologies marks a significant advancement in medicinal chemistry, particularly in the detection and monitoring of therapeutic agents such as doxorubicin. This review aims to elucidate the development of cutting-edge biosensor technologies specifically tailored for the sensitive and selective detection of doxorubicin, a cornerstone chemotherapeutic agent. We critically analyze various recently developed nanosensors, including electrochemical sensors and optical sensors, highlighting their distinct mechanisms, advantages, and limitations. Unlike previous literature, this review synthesizes current research findings to provide a comprehensive overview of how these innovative nanosensing platforms can enhance drug monitoring, improve therapeutic outcomes, and support personalized medicine approaches. By addressing the existing challenges in doxorubicin detection, our findings underscore the transformative potential of integrating nanotechnology with biosensing applications, ultimately contributing to more effective cancer treatment strategies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 6","pages":"1253 - 1268"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03421-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of nanosensing technologies marks a significant advancement in medicinal chemistry, particularly in the detection and monitoring of therapeutic agents such as doxorubicin. This review aims to elucidate the development of cutting-edge biosensor technologies specifically tailored for the sensitive and selective detection of doxorubicin, a cornerstone chemotherapeutic agent. We critically analyze various recently developed nanosensors, including electrochemical sensors and optical sensors, highlighting their distinct mechanisms, advantages, and limitations. Unlike previous literature, this review synthesizes current research findings to provide a comprehensive overview of how these innovative nanosensing platforms can enhance drug monitoring, improve therapeutic outcomes, and support personalized medicine approaches. By addressing the existing challenges in doxorubicin detection, our findings underscore the transformative potential of integrating nanotechnology with biosensing applications, ultimately contributing to more effective cancer treatment strategies.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.