{"title":"DE-Unet: Dual-Encoder U-Net for Ultra-High Resolution Remote Sensing Image Segmentation","authors":"Ye Liu;Shitao Song;Miaohui Wang;Hao Gao;Jun Liu","doi":"10.1109/JSTARS.2025.3565753","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a growing demand for remote sensing image semantic segmentation in various applications. The key to semantic segmentation lies in the ability to globally comprehend the input image. While recent transformer-based methods can effectively capture global contextual information, they suffer from high computational complexity, particularly when it comes to ultra-high resolution (UHR) remote sensing images, it is even more challenging for these methods to achieve a satisfactory balance between accuracy and computation speed. To address these issues, we propose in this article a CNN-based dual-encoder U-Net for effective and efficient UHR image segmentation. Our method incorporates dual encoders into the symmetrical framework of U-Net. The dual encoders endow the network with strong global and local perception capabilities simultaneously, while the U-Net's symmetrical structure guarantees the network's robust decoding ability. Additionally, multipath skip connections ensure ample information exchange between the dual encoders, as well as between the encoders and decoders. Furthermore, we proposes a context-aware modulation fusion module that guides the encoder–encoder and encoder–decoder data fusion through global receptive fields. Experiments conducted on public UHR remote sensing datasets such as the Inria Aerial and DeepGlobe have demonstrated the effectiveness of proposed method. Specifically on the Inria Aerial dataset, our method achieves a 77.42% mIoU which outperforms the baseline (Guo et al., 2022) by 3.14% while maintaining comparable inference speed as shown in Fig. <xref>1</xref>.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"12290-12302"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980298/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been a growing demand for remote sensing image semantic segmentation in various applications. The key to semantic segmentation lies in the ability to globally comprehend the input image. While recent transformer-based methods can effectively capture global contextual information, they suffer from high computational complexity, particularly when it comes to ultra-high resolution (UHR) remote sensing images, it is even more challenging for these methods to achieve a satisfactory balance between accuracy and computation speed. To address these issues, we propose in this article a CNN-based dual-encoder U-Net for effective and efficient UHR image segmentation. Our method incorporates dual encoders into the symmetrical framework of U-Net. The dual encoders endow the network with strong global and local perception capabilities simultaneously, while the U-Net's symmetrical structure guarantees the network's robust decoding ability. Additionally, multipath skip connections ensure ample information exchange between the dual encoders, as well as between the encoders and decoders. Furthermore, we proposes a context-aware modulation fusion module that guides the encoder–encoder and encoder–decoder data fusion through global receptive fields. Experiments conducted on public UHR remote sensing datasets such as the Inria Aerial and DeepGlobe have demonstrated the effectiveness of proposed method. Specifically on the Inria Aerial dataset, our method achieves a 77.42% mIoU which outperforms the baseline (Guo et al., 2022) by 3.14% while maintaining comparable inference speed as shown in Fig. 1.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.