Ayad Babaee, Thea Overgaard Wichmann, Mikkel M. Rasmussen, Ole Brink, Dorte Aalund Olsen, Lars C. Borris, Maj Lesbo, Rikke Wehner Rasmussen, Carlos Salomon, Aase Handberg, Maiken Mellergaard, Claus V. B. Hviid
{"title":"Extracellular Vesicle Glial Fibrillary Acidic Protein as a Circulating Biomarker of Traumatic Brain Injury Severity","authors":"Ayad Babaee, Thea Overgaard Wichmann, Mikkel M. Rasmussen, Ole Brink, Dorte Aalund Olsen, Lars C. Borris, Maj Lesbo, Rikke Wehner Rasmussen, Carlos Salomon, Aase Handberg, Maiken Mellergaard, Claus V. B. Hviid","doi":"10.1007/s12031-025-02360-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traumatic brain injury (TBI) remains a major global health challenge with a need for improved diagnostic and prognostic biomarkers. This study aimed to evaluate the biomarker potential of extracellular vesicle (EV)-encapsulated glial fibrillary acidic protein (EV-GFAP), neurofilament light chain (EV-NfL), total tau (EV-T-Tau), and ubiquitin carboxy-terminal hydrolase L1 (EV-UCH-L1) in TBI. A cohort of 93 trauma patients (75 with TBI and 18 without TBI) was analyzed. Patients were sampled on admission, as well as 15 and 72 h post-injury. Following initial method validation, EVs were isolated from plasma using size exclusion chromatography (SEC), and plasma levels and EV cargo levels of biomarkers were measured using an ultra-sensitive Single Molecule Array. EV-GFAP levels were significantly elevated in TBI patients compared to non-TBI trauma patients at admission and 15 h. A positive head CT was associated with 2.85 (95% CI: 1.18–6.91) fold increased EV-GFAP, whereas EV-NfL, EV-T-Tau, and EV-UCH-L1 levels were not affected. None of the tested EV biomarkers were associated with 1-year mortality or 6–12 months’ functional outcome. Plasma-GFAP levels increased 3.4 (95% CI: 1.72–6.70) fold with a positive head CT but were not associated with outcomes. EV-GFAP shows potential as an early biomarker of TBI, but plasma-GFAP remains a practical and reliable alternative. Future studies should explore the potential complementary roles of EV-based biomarkers on alternative aspects of TBI pathophysiology and prediction of long-term outcomes. Studies should refine methods to enhance reproducibility and clinical applicability.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02360-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02360-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) remains a major global health challenge with a need for improved diagnostic and prognostic biomarkers. This study aimed to evaluate the biomarker potential of extracellular vesicle (EV)-encapsulated glial fibrillary acidic protein (EV-GFAP), neurofilament light chain (EV-NfL), total tau (EV-T-Tau), and ubiquitin carboxy-terminal hydrolase L1 (EV-UCH-L1) in TBI. A cohort of 93 trauma patients (75 with TBI and 18 without TBI) was analyzed. Patients were sampled on admission, as well as 15 and 72 h post-injury. Following initial method validation, EVs were isolated from plasma using size exclusion chromatography (SEC), and plasma levels and EV cargo levels of biomarkers were measured using an ultra-sensitive Single Molecule Array. EV-GFAP levels were significantly elevated in TBI patients compared to non-TBI trauma patients at admission and 15 h. A positive head CT was associated with 2.85 (95% CI: 1.18–6.91) fold increased EV-GFAP, whereas EV-NfL, EV-T-Tau, and EV-UCH-L1 levels were not affected. None of the tested EV biomarkers were associated with 1-year mortality or 6–12 months’ functional outcome. Plasma-GFAP levels increased 3.4 (95% CI: 1.72–6.70) fold with a positive head CT but were not associated with outcomes. EV-GFAP shows potential as an early biomarker of TBI, but plasma-GFAP remains a practical and reliable alternative. Future studies should explore the potential complementary roles of EV-based biomarkers on alternative aspects of TBI pathophysiology and prediction of long-term outcomes. Studies should refine methods to enhance reproducibility and clinical applicability.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.