3,7-Diazabicyclo[3.3.1]nonanes and 1,3-diazaadamantanes containing monoterpenoid moieties as synthetic adaptogens: synthesis, ADMET predictions, and in vivo biological activity

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Anastasiia A. Kotliarova, Konstantin Yu. Ponomarev, Ekaterina A. Morozova, Evgeniy V. Suslov, Alla V. Pavlova, Tatyana G. Tolstikova, Konstantin P. Volcho, Nariman F. Salakhutdinov
{"title":"3,7-Diazabicyclo[3.3.1]nonanes and 1,3-diazaadamantanes containing monoterpenoid moieties as synthetic adaptogens: synthesis, ADMET predictions, and in vivo biological activity","authors":"Anastasiia A. Kotliarova,&nbsp;Konstantin Yu. Ponomarev,&nbsp;Ekaterina A. Morozova,&nbsp;Evgeniy V. Suslov,&nbsp;Alla V. Pavlova,&nbsp;Tatyana G. Tolstikova,&nbsp;Konstantin P. Volcho,&nbsp;Nariman F. Salakhutdinov","doi":"10.1007/s00044-025-03414-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fatigue is a widespread issue that affects both mental and physical performance, yet effective treatments remain limited. This study focused on developing and evaluating new synthetic adaptogens—compounds designed to enhance endurance and reduce fatigue. We synthesized and tested derivatives of 3,7-diazabicyclo[3.3.1]nonanes (bispidine) and 1,3-diazaadamantanes, incorporating monoterpenoid fragments to improve their pharmacological properties. Using SwissADME and PreADMET tools, we predicted that most of these compounds would be well-absorbed in the gastrointestinal tract and capable of crossing the blood-brain barrier. Among them, compound <b>2</b>, a 1,3-diazaadamantane derivative, stood out for its strong antifatigue effects at 10 mg/kg in swimming and running endurance tests in in vivo experiments with mice, even outperforming the reference drug bromantane. Acute toxicity tests showed that this compound has a high safety margin, with an LD<sub>50</sub> value 237.5 times greater than its effective dose. Further analysis of structure-activity relationships revealed that monosubstituted 1,3-diazaadamantane derivatives had the most promising effects, suggesting that specific chemical modifications can enhance performance. These findings indicate that this new class of synthetic adaptogens could offer a safe and effective way to combat fatigue, making them strong candidates for further pharmacological research and potential therapeutic use.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 6","pages":"1347 - 1363"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03414-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue is a widespread issue that affects both mental and physical performance, yet effective treatments remain limited. This study focused on developing and evaluating new synthetic adaptogens—compounds designed to enhance endurance and reduce fatigue. We synthesized and tested derivatives of 3,7-diazabicyclo[3.3.1]nonanes (bispidine) and 1,3-diazaadamantanes, incorporating monoterpenoid fragments to improve their pharmacological properties. Using SwissADME and PreADMET tools, we predicted that most of these compounds would be well-absorbed in the gastrointestinal tract and capable of crossing the blood-brain barrier. Among them, compound 2, a 1,3-diazaadamantane derivative, stood out for its strong antifatigue effects at 10 mg/kg in swimming and running endurance tests in in vivo experiments with mice, even outperforming the reference drug bromantane. Acute toxicity tests showed that this compound has a high safety margin, with an LD50 value 237.5 times greater than its effective dose. Further analysis of structure-activity relationships revealed that monosubstituted 1,3-diazaadamantane derivatives had the most promising effects, suggesting that specific chemical modifications can enhance performance. These findings indicate that this new class of synthetic adaptogens could offer a safe and effective way to combat fatigue, making them strong candidates for further pharmacological research and potential therapeutic use.

含有单萜类基团的3,7-二氮杂双环壬烷和1,3-二氮杂金刚烷作为合成适应原:合成、ADMET预测和体内生物活性
疲劳是一个影响精神和身体表现的普遍问题,但有效的治疗方法仍然有限。这项研究的重点是开发和评估新的合成适应原-旨在提高耐力和减少疲劳的化合物。我们合成并测试了3,7-重氮杂环[3.3.1]壬烷(bispidine)和1,3-重氮杂金刚烷的衍生物,加入单萜类片段以改善其药理特性。使用SwissADME和PreADMET工具,我们预测大多数这些化合物将在胃肠道中被很好地吸收,并能够穿过血脑屏障。其中,化合物2是1,3-二氮杂金刚烷衍生物,在小鼠体内实验中,以10 mg/kg的强度进行游泳和跑步耐力测试,抗疲劳效果突出,甚至超过了参比药物溴烷。急性毒性试验表明,该化合物具有较高的安全裕度,其LD50值是有效剂量的237.5倍。进一步的构效关系分析表明,单取代的1,3-二氮杂金刚烷衍生物具有最有希望的效果,这表明特定的化学修饰可以提高性能。这些发现表明,这类新的合成适应原可以提供一种安全有效的抗疲劳方法,使它们成为进一步药理研究和潜在治疗用途的强有力的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信