Ahmed K. B. Aljohani, Yucheng Lu, Kelly J. Jackson, Paul G. Waddell, Jason H. Gill, Alistair K. Brown, Jonathan D. Sellars
{"title":"Benzoxa-[2,1,3]-diazole substituted amino acid hydrazides as therapeutics for drug-resistant Mycobacterium tuberculosis","authors":"Ahmed K. B. Aljohani, Yucheng Lu, Kelly J. Jackson, Paul G. Waddell, Jason H. Gill, Alistair K. Brown, Jonathan D. Sellars","doi":"10.1007/s00044-025-03417-1","DOIUrl":null,"url":null,"abstract":"<div><p>The global burden of tuberculosis is on the rise and continues to be alarmingly high, with a notable prevalence of multidrug-resistant disease. Despite a promising drug development pipeline, the levels of resistance to these therapeutics remain significant, underscoring the need for new, innovative drugs to tackle this clinical issue. Benzoxadiazoles and their derivatives have become a valuable foundation for the development of next-generation antibacterial, antifungal, and anticancer agents. Herein, we explore the benzoxa-[2,1,3]-diazole scaffold as a promising framework for antimycobacterial development. Building on prior work, thirty-two amino acid hydrazide derivatives were synthesised using a modular approach, allowing variation of both the aryl hydrazine and amino acid moieties. These analogues were evaluated for activity against wild-type, isoniazid-resistant, and multidrug-resistant mycobacterial strains using the REMA assay, with several analogues demonstrating notable inhibitory activity. Overall, the series of novel benzoxa-[2,1,3]-diazole amino acid hydrazides demonstrates that through manipulation and optimisation of the amino acid hydrazide moieties, it is feasible to engineer potent compounds with improved antimycobacterial activity against both wild-type bacteria and, crucially, drug-resistant strains of the disease.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 6","pages":"1269 - 1275"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-025-03417-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03417-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The global burden of tuberculosis is on the rise and continues to be alarmingly high, with a notable prevalence of multidrug-resistant disease. Despite a promising drug development pipeline, the levels of resistance to these therapeutics remain significant, underscoring the need for new, innovative drugs to tackle this clinical issue. Benzoxadiazoles and their derivatives have become a valuable foundation for the development of next-generation antibacterial, antifungal, and anticancer agents. Herein, we explore the benzoxa-[2,1,3]-diazole scaffold as a promising framework for antimycobacterial development. Building on prior work, thirty-two amino acid hydrazide derivatives were synthesised using a modular approach, allowing variation of both the aryl hydrazine and amino acid moieties. These analogues were evaluated for activity against wild-type, isoniazid-resistant, and multidrug-resistant mycobacterial strains using the REMA assay, with several analogues demonstrating notable inhibitory activity. Overall, the series of novel benzoxa-[2,1,3]-diazole amino acid hydrazides demonstrates that through manipulation and optimisation of the amino acid hydrazide moieties, it is feasible to engineer potent compounds with improved antimycobacterial activity against both wild-type bacteria and, crucially, drug-resistant strains of the disease.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.