{"title":"FRANet: A Feature Refinement Attention Network for SAR Image Denoising","authors":"Shuaiqi Liu;Yu Lei;Qi Hu;Ming Liu;Bing Li;Weiming Hu;Yu-Dong Zhang","doi":"10.1109/JSTARS.2025.3564846","DOIUrl":null,"url":null,"abstract":"Since synthetic aperture radar (SAR) images have complex noise and have no clean reference images, SAR image denoising is very challenging. With the development of deep learning, several denoising algorithms based on deep learning are proposed to achieve a better SAR image denoising effect. However, most networks are prone to gradient disappearance and explosion in the training process. The deep network model will produce an excessive amount of computation. The denoising time is also too long. Since most of the denoising algorithms based on deep learning use simulated images for model training, it is difficult to effectively suppress speckle noise in the real SAR image while a balance between denoising and detail preservation cannot be achieved. To address the mentioned problems, we propose a novel feature refinement attention network named FRANet. In FRANet, a feature refinement network is first used to refine the input noise image to extract more useful features while accelerating network training. Second, a feature attention encoder–decoder network is constructed for deep feature extraction. This network uses an asymmetric encoder–decoder structure to expand the receptive field, which can improve the information extraction ability and reduce the number of parameters effectively. Finally, the final denoised SAR image is obtained by global residual learning. Compared with other denoising algorithms, the proposed algorithm can achieve better results in denoising performance and running time.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"12343-12363"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979213/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Since synthetic aperture radar (SAR) images have complex noise and have no clean reference images, SAR image denoising is very challenging. With the development of deep learning, several denoising algorithms based on deep learning are proposed to achieve a better SAR image denoising effect. However, most networks are prone to gradient disappearance and explosion in the training process. The deep network model will produce an excessive amount of computation. The denoising time is also too long. Since most of the denoising algorithms based on deep learning use simulated images for model training, it is difficult to effectively suppress speckle noise in the real SAR image while a balance between denoising and detail preservation cannot be achieved. To address the mentioned problems, we propose a novel feature refinement attention network named FRANet. In FRANet, a feature refinement network is first used to refine the input noise image to extract more useful features while accelerating network training. Second, a feature attention encoder–decoder network is constructed for deep feature extraction. This network uses an asymmetric encoder–decoder structure to expand the receptive field, which can improve the information extraction ability and reduce the number of parameters effectively. Finally, the final denoised SAR image is obtained by global residual learning. Compared with other denoising algorithms, the proposed algorithm can achieve better results in denoising performance and running time.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.