Josef Krátký , Markéta Zajíčková , Aya C. Taki , Oliver Michel , Petra Matoušková , Ivan Vokřál , Karolína Štěrbová , Ondřej Vosála , Beate Lungerich , Thomas Kurz , Robin B. Gasser , Karel Harant , Lenka Skálová
{"title":"New derivatives of benzhydroxamic acid with nematocidal activity against Haemonchus contortus and Caenorhabditis elegans","authors":"Josef Krátký , Markéta Zajíčková , Aya C. Taki , Oliver Michel , Petra Matoušková , Ivan Vokřál , Karolína Štěrbová , Ondřej Vosála , Beate Lungerich , Thomas Kurz , Robin B. Gasser , Karel Harant , Lenka Skálová","doi":"10.1016/j.ijpddr.2025.100599","DOIUrl":null,"url":null,"abstract":"<div><div>Parasitic nematodes cause a wide range of diseases in animals, including humans. However, the efficacy of existing anthelmintic drugs, commonly used to treat these infections, is waning due to the increasing prevalence of drug resistance in nematode populations. This growing challenge underscores the urgent need to discover and develop novel nematocidal drugs that target new molecular pathways. In the present study, 13 novel derivatives of benzhydroxamic acid (OMKs) were designed and synthesized. Their anthelmintic activity was tested in the parasitic nematode <em>Haemonchus contortus</em> (barber's pole worm) and the free-living nematode <em>Caenorhabditis elegans</em> and potential toxicity assessed in mammalian models. Compound OMK211 showed the most promising results. It decreased viability and motility of larval and adult stages of both nematode species and of both drug-sensitive and drug-resistant strains of <em>H. contortus</em> at micromolar concentrations with the highest efficacy in <em>H. contortus</em> adult males (IC<sub>50</sub> ∼ 1 μM). Moreover, OMK211 was not toxic in mammalians cells <em>in vitro</em> and in mice <em>in vivo</em>. Consequently, thermal proteome profiling analysis was used to infer the putative molecular target of OMK211 in <em>H. contortus</em>. The results revealed C2-domain containing protein A0A6F7Q0A8, encoded by gene HCON_00184,900, as an interacting partner of OMK211. Using advanced structural prediction and docking tools, this protein is considered an interesting putative molecular target of new nematocidal drugs as its orthologs are present in several nematodes but not in mammals. In conclusion, novel derivatives of benzhydroxamic acid represent a promising new class of potential anthelmintics, which deserve further testing.</div></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"28 ","pages":"Article 100599"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320725000223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic nematodes cause a wide range of diseases in animals, including humans. However, the efficacy of existing anthelmintic drugs, commonly used to treat these infections, is waning due to the increasing prevalence of drug resistance in nematode populations. This growing challenge underscores the urgent need to discover and develop novel nematocidal drugs that target new molecular pathways. In the present study, 13 novel derivatives of benzhydroxamic acid (OMKs) were designed and synthesized. Their anthelmintic activity was tested in the parasitic nematode Haemonchus contortus (barber's pole worm) and the free-living nematode Caenorhabditis elegans and potential toxicity assessed in mammalian models. Compound OMK211 showed the most promising results. It decreased viability and motility of larval and adult stages of both nematode species and of both drug-sensitive and drug-resistant strains of H. contortus at micromolar concentrations with the highest efficacy in H. contortus adult males (IC50 ∼ 1 μM). Moreover, OMK211 was not toxic in mammalians cells in vitro and in mice in vivo. Consequently, thermal proteome profiling analysis was used to infer the putative molecular target of OMK211 in H. contortus. The results revealed C2-domain containing protein A0A6F7Q0A8, encoded by gene HCON_00184,900, as an interacting partner of OMK211. Using advanced structural prediction and docking tools, this protein is considered an interesting putative molecular target of new nematocidal drugs as its orthologs are present in several nematodes but not in mammals. In conclusion, novel derivatives of benzhydroxamic acid represent a promising new class of potential anthelmintics, which deserve further testing.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.