A credit card fraud detection approach based on ensemble machine learning classifier with hybrid data sampling

Khanda Hassan Ahmed , Stefan Axelsson , Yuhong Li , Ali Makki Sagheer
{"title":"A credit card fraud detection approach based on ensemble machine learning classifier with hybrid data sampling","authors":"Khanda Hassan Ahmed ,&nbsp;Stefan Axelsson ,&nbsp;Yuhong Li ,&nbsp;Ali Makki Sagheer","doi":"10.1016/j.mlwa.2025.100675","DOIUrl":null,"url":null,"abstract":"<div><div>The existing fraud detection methods present limitations such as imbalanced data, incorrect identification of fraudulent cases, limited applicability to different scenarios, and difficulties processing data in real-time. This paper proposes an ensemble machine-learning model for detecting fraud in credit card transactions. It also integrates the Synthetic Minority Oversampling Technique (SMOTE) with Edited Nearest Neighbor (ENN) to address the problem of the imbalanced datasets. The experimental results show that our approach performs better than the existing methods. Therefore, it will establish an essential framework for the ongoing investigations in developing more robust and flexible systems for fraud detection.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100675"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing fraud detection methods present limitations such as imbalanced data, incorrect identification of fraudulent cases, limited applicability to different scenarios, and difficulties processing data in real-time. This paper proposes an ensemble machine-learning model for detecting fraud in credit card transactions. It also integrates the Synthetic Minority Oversampling Technique (SMOTE) with Edited Nearest Neighbor (ENN) to address the problem of the imbalanced datasets. The experimental results show that our approach performs better than the existing methods. Therefore, it will establish an essential framework for the ongoing investigations in developing more robust and flexible systems for fraud detection.
基于混合数据采样的集成机器学习分类器的信用卡欺诈检测方法
现有的欺诈检测方法存在数据不均衡、对欺诈案件的识别不正确、对不同场景的适用性有限、数据的实时处理困难等局限性。本文提出了一种用于检测信用卡交易欺诈的集成机器学习模型。它还结合了合成少数过采样技术(SMOTE)和编辑最近邻(ENN)来解决数据集不平衡的问题。实验结果表明,该方法的性能优于现有方法。因此,它将为正在进行的调查建立一个基本框架,以发展更有力和灵活的欺诈检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信