Enhanced ROI guided deep learning model for Alzheimer’s detection using 3D MRI images

Q1 Medicine
Israt Jahan Khan , Md. Fahim Bin Amin , Md. Delwar Shahadat Deepu , Hazera Khatun Hira , Asif Mahmud , Anas Mashad Chowdhury , Salekul Islam , Md. Saddam Hossain Mukta , Swakkhar Shatabda , Alzheimer’s Disease Neuroimaging Initiative
{"title":"Enhanced ROI guided deep learning model for Alzheimer’s detection using 3D MRI images","authors":"Israt Jahan Khan ,&nbsp;Md. Fahim Bin Amin ,&nbsp;Md. Delwar Shahadat Deepu ,&nbsp;Hazera Khatun Hira ,&nbsp;Asif Mahmud ,&nbsp;Anas Mashad Chowdhury ,&nbsp;Salekul Islam ,&nbsp;Md. Saddam Hossain Mukta ,&nbsp;Swakkhar Shatabda ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.imu.2025.101650","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease is an incurable condition that predominantly affects the human brain, leading to the shrinkage of various brain regions and the disruption of neuronal connections. Current state-of-the-art methods for detecting Alzheimer’s disease using 3D MRI images are resource-intensive and time-consuming. In this paper, we propose a Regions of Interest (ROI)-guided detection paradigm to address these challenges. We employ a 3D ResNet integrated with a Convolutional Block Attention Module (CBAM), demonstrating that emphasising ROIs in brain imaging can substantially reduce both computational expenditure and training time. Our model exhibits robust performance in discriminating Alzheimer’s disease from mild cognitive impairment, achieving an accuracy of 88% across the entire brain and 92% within targeted ROIs on the ADNI dataset. The accuracy on the OASIS dataset is even higher, reaching 98% for all regions and 98.33% for the ROIs. When distinguishing Alzheimer’s disease from cognitively normal individuals, the accuracy improves further, achieving 93.33% for the ROIs on the ADNI dataset and 97.8% on the OASIS dataset. In differentiating cognitively normal individuals from those with mild cognitive impairment, the model attains an accuracy of 88.2% for the ROIs on the ADNI dataset and 98.6% on the OASIS dataset. These findings highlight a notable enhancement in detection accuracy through the utilisation of fewer, yet more salient brain regions, underscoring the efficacy of our ROI-guided approach.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"56 ","pages":"Article 101650"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease is an incurable condition that predominantly affects the human brain, leading to the shrinkage of various brain regions and the disruption of neuronal connections. Current state-of-the-art methods for detecting Alzheimer’s disease using 3D MRI images are resource-intensive and time-consuming. In this paper, we propose a Regions of Interest (ROI)-guided detection paradigm to address these challenges. We employ a 3D ResNet integrated with a Convolutional Block Attention Module (CBAM), demonstrating that emphasising ROIs in brain imaging can substantially reduce both computational expenditure and training time. Our model exhibits robust performance in discriminating Alzheimer’s disease from mild cognitive impairment, achieving an accuracy of 88% across the entire brain and 92% within targeted ROIs on the ADNI dataset. The accuracy on the OASIS dataset is even higher, reaching 98% for all regions and 98.33% for the ROIs. When distinguishing Alzheimer’s disease from cognitively normal individuals, the accuracy improves further, achieving 93.33% for the ROIs on the ADNI dataset and 97.8% on the OASIS dataset. In differentiating cognitively normal individuals from those with mild cognitive impairment, the model attains an accuracy of 88.2% for the ROIs on the ADNI dataset and 98.6% on the OASIS dataset. These findings highlight a notable enhancement in detection accuracy through the utilisation of fewer, yet more salient brain regions, underscoring the efficacy of our ROI-guided approach.
增强的ROI引导深度学习模型用于阿尔茨海默病的三维MRI图像检测
阿尔茨海默病是一种无法治愈的疾病,主要影响人类大脑,导致大脑各区域萎缩和神经元连接中断。目前使用3D MRI图像检测阿尔茨海默病的最先进方法是资源密集且耗时的。在本文中,我们提出了一个感兴趣区域(ROI)引导的检测范式来解决这些挑战。我们使用了一个集成了卷积块注意模块(CBAM)的3D ResNet,证明在脑成像中强调roi可以大大减少计算支出和训练时间。我们的模型在区分阿尔茨海默病和轻度认知障碍方面表现出强大的性能,在整个大脑中达到88%的准确率,在ADNI数据集中的目标roi内达到92%的准确率。OASIS数据集的精度更高,所有地区达到98%,roi达到98.33%。当将阿尔茨海默病与认知正常个体区分开来时,准确率进一步提高,在ADNI数据集上的roi达到93.33%,在OASIS数据集上的roi达到97.8%。在区分认知正常个体和轻度认知障碍个体时,该模型在ADNI数据集上的roi准确率为88.2%,在OASIS数据集上的roi准确率为98.6%。这些发现强调了通过使用更少但更突出的大脑区域来显著提高检测准确性,强调了我们的roi指导方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信