Longitudinal effects of visualizing uncertainty of situation detection and prediction of automated vehicles on user perceptions

IF 3.5 2区 工程技术 Q1 PSYCHOLOGY, APPLIED
Pascal Jansen , Mark Colley , Max Rädler , Jonas Schwedler , Enrico Rukzio
{"title":"Longitudinal effects of visualizing uncertainty of situation detection and prediction of automated vehicles on user perceptions","authors":"Pascal Jansen ,&nbsp;Mark Colley ,&nbsp;Max Rädler ,&nbsp;Jonas Schwedler ,&nbsp;Enrico Rukzio","doi":"10.1016/j.trf.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the impact of uncertainty visualizations in automated vehicle (AV) functionality on user perceptions over a three-day longitudinal study. Participants (N=50) watched real-world driving videos twice daily, in the morning and evening. These videos depicted morning and evening commutes, featuring visualizations of AVs' pedestrian detection, vehicle recognition, and pedestrian intention prediction. We measured perceived safety, trust, mental workload, and cognitive load using a within-subjects design. Results show increased perceived safety and trust over time, with higher ratings in the evening sessions, reflecting greater predictability and user confidence in AV by the study's end. However, inconsistencies in pedestrian detection and intention prediction led to mixed reactions, highlighting the need for visualization stability and clarity refinement. Participants also desired a feature indicating the AV's intended path and options for manual intervention. Our findings suggest transparency and usability in AV visualizations can foster trust and perceived safety, informing future AV interface design.</div></div>","PeriodicalId":48355,"journal":{"name":"Transportation Research Part F-Traffic Psychology and Behaviour","volume":"113 ","pages":"Pages 536-553"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part F-Traffic Psychology and Behaviour","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369847825001779","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the impact of uncertainty visualizations in automated vehicle (AV) functionality on user perceptions over a three-day longitudinal study. Participants (N=50) watched real-world driving videos twice daily, in the morning and evening. These videos depicted morning and evening commutes, featuring visualizations of AVs' pedestrian detection, vehicle recognition, and pedestrian intention prediction. We measured perceived safety, trust, mental workload, and cognitive load using a within-subjects design. Results show increased perceived safety and trust over time, with higher ratings in the evening sessions, reflecting greater predictability and user confidence in AV by the study's end. However, inconsistencies in pedestrian detection and intention prediction led to mixed reactions, highlighting the need for visualization stability and clarity refinement. Participants also desired a feature indicating the AV's intended path and options for manual intervention. Our findings suggest transparency and usability in AV visualizations can foster trust and perceived safety, informing future AV interface design.
自动驾驶车辆态势检测与预测的可视化不确定性对用户感知的纵向影响
本文通过为期三天的纵向研究,探讨了自动驾驶汽车(AV)功能中不确定性可视化对用户感知的影响。参与者(N=50)每天早上和晚上观看两次真实驾驶视频。这些视频描绘了早晨和晚上的通勤情况,以自动驾驶汽车的行人检测、车辆识别和行人意图预测的可视化为特色。我们使用受试者内设计测量感知安全性、信任度、心理工作量和认知负荷。结果显示,随着时间的推移,人们对自动驾驶汽车的安全性和信任度有所提高,晚上的评分更高,反映出研究结束时自动驾驶汽车的可预测性和用户信心更高。然而,行人检测和意图预测的不一致性导致了不同的反应,突出了可视化稳定性和清晰度改进的必要性。参与者还希望有一个功能,表明自动驾驶汽车的预期路径和人工干预的选择。我们的研究结果表明,自动驾驶可视化的透明度和可用性可以促进信任和感知安全性,为未来的自动驾驶界面设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
14.60%
发文量
239
审稿时长
71 days
期刊介绍: Transportation Research Part F: Traffic Psychology and Behaviour focuses on the behavioural and psychological aspects of traffic and transport. The aim of the journal is to enhance theory development, improve the quality of empirical studies and to stimulate the application of research findings in practice. TRF provides a focus and a means of communication for the considerable amount of research activities that are now being carried out in this field. The journal provides a forum for transportation researchers, psychologists, ergonomists, engineers and policy-makers with an interest in traffic and transport psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信