Comparison of classical, xgboost and neural network methods for parameter estimation in epidemic processes on random graphs

Ágnes Backhausz , Edit Bognár , Villő Csiszár , Damján Tárkányi , András Zempléni
{"title":"Comparison of classical, xgboost and neural network methods for parameter estimation in epidemic processes on random graphs","authors":"Ágnes Backhausz ,&nbsp;Edit Bognár ,&nbsp;Villő Csiszár ,&nbsp;Damján Tárkányi ,&nbsp;András Zempléni","doi":"10.1016/j.fraope.2025.100271","DOIUrl":null,"url":null,"abstract":"<div><div>The main goal of this paper is to quantitatively compare the performance of classical methods to XGBoost and convolutional neural networks in a parameter estimation problem for SIR epidemic spread. Since we model the underlying social network by flexible two-layer random graphs, we can also study how the structural difference between the graphs in the training set and the test set influences the error of the estimate. We also quantify the improvement of the results when additional information (such as the average degree of infected vertices) is available, compared to the case when only the time series of the number of susceptible and infected individuals is observed. Furthermore, the simulation results show how the accuracy of the methods varies with the time elapsed from the start of the epidemic.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100271"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this paper is to quantitatively compare the performance of classical methods to XGBoost and convolutional neural networks in a parameter estimation problem for SIR epidemic spread. Since we model the underlying social network by flexible two-layer random graphs, we can also study how the structural difference between the graphs in the training set and the test set influences the error of the estimate. We also quantify the improvement of the results when additional information (such as the average degree of infected vertices) is available, compared to the case when only the time series of the number of susceptible and infected individuals is observed. Furthermore, the simulation results show how the accuracy of the methods varies with the time elapsed from the start of the epidemic.
随机图上流行病过程参数估计的经典、xgboost和神经网络方法的比较
本文的主要目的是定量比较经典方法与XGBoost和卷积神经网络在SIR流行病传播参数估计问题中的性能。由于我们通过灵活的两层随机图对底层社会网络建模,我们还可以研究训练集和测试集图的结构差异如何影响估计的误差。与仅观察易感和感染个体数量的时间序列相比,我们还量化了在获得额外信息(如感染顶点的平均程度)时结果的改进。此外,模拟结果显示了方法的准确性如何随疫情开始时间的推移而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信