Zahra Bagherzadeh , Sharieh Hosseini , Mehdi Esrafili dizaji
{"title":"A DFT study of pure and M-encapsulated (M=Na and K) B40 fullerenes as potential sensors for the flutamide drug","authors":"Zahra Bagherzadeh , Sharieh Hosseini , Mehdi Esrafili dizaji","doi":"10.1016/j.jmgm.2025.109084","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research has illustrated that B40 fullerene can function as a sensor for detecting biological molecules, including drugs. This study examined the electron sensitivity of pure and metal-encapsulated (M = Na and K) B40 fullerenes about the anticancer drug flutamide (FLUT) by density functional theory (DFT). The findings revealed that the adsorption energy of FLUT on M@B40 fullerenes is −3.2 KCal/mol, slightly stronger than on the bare B40 fullerene in the gas phase. The dipole moment of the complexes increased significantly in both the gas and water phases. Thermodynamic parameters for the adsorption of FLUT indicated physical adsorption, which is exothermic and spontaneous at room temperature in both gas and water media. The energy gap of fullerenes after the adsorption of FLUT on B40 and Na@B40 decreased by 9 % and 3 %, respectively, resulting in increased electric conductivity and the generation of an electrical signal. Consequently, B40 and Na@B40 have the potential for sensing the FLUT anticancer drug.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"140 ","pages":"Article 109084"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325001445","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research has illustrated that B40 fullerene can function as a sensor for detecting biological molecules, including drugs. This study examined the electron sensitivity of pure and metal-encapsulated (M = Na and K) B40 fullerenes about the anticancer drug flutamide (FLUT) by density functional theory (DFT). The findings revealed that the adsorption energy of FLUT on M@B40 fullerenes is −3.2 KCal/mol, slightly stronger than on the bare B40 fullerene in the gas phase. The dipole moment of the complexes increased significantly in both the gas and water phases. Thermodynamic parameters for the adsorption of FLUT indicated physical adsorption, which is exothermic and spontaneous at room temperature in both gas and water media. The energy gap of fullerenes after the adsorption of FLUT on B40 and Na@B40 decreased by 9 % and 3 %, respectively, resulting in increased electric conductivity and the generation of an electrical signal. Consequently, B40 and Na@B40 have the potential for sensing the FLUT anticancer drug.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.