Interpretable multi-index seismic assessment framework for reinforced concrete columns using voting ensemble methodology

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Congcong Fan , Youliang Ding , Fangfang Geng , Jingwei Xue , Kang Yang
{"title":"Interpretable multi-index seismic assessment framework for reinforced concrete columns using voting ensemble methodology","authors":"Congcong Fan ,&nbsp;Youliang Ding ,&nbsp;Fangfang Geng ,&nbsp;Jingwei Xue ,&nbsp;Kang Yang","doi":"10.1016/j.istruc.2025.109270","DOIUrl":null,"url":null,"abstract":"<div><div>Reinforced concrete (RC) columns constitute critical load-bearing components that determine structural safety under seismic actions. While conventional assessment methods relying on empirical formulas struggle to address complex multi-parameter interactions, this study proposes an interpretable Voting-based Optimization Tree Regression (VOTR) framework for multi-index seismic performance evaluation. A rigorously validated database of 145 experimental specimens was established, with data rationality confirmed through Pearson correlation and mutual information analysis. The VOTR model integrates Bayesian hyperparameter optimization with 10-fold cross-validation, demonstrating enhanced predictive accuracy over baseline machine learning methods in estimating ductility coefficients (Test R2 = 83.76 %) and yield displacements (Test R2 = 91.26 %). Through the analysis of data correlation and the significance of the SHAP model characteristics, it is found that the axial compression ratio, hoop ratio, and shear span ratio are the critical factors influencing ductility and yield displacement. The interpretability analysis bridges data-driven predictions with mechanical principles, revealing quantitative relationships between design parameters and seismic performance metrics. Comparative validations confirm the model's effectiveness in supporting performance-based seismic design optimization. This framework advances traditional prescriptive methods by providing a transparent, physics-informed assessment tool that balances computational accuracy with engineering interpretability for RC column safety evaluations.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"78 ","pages":"Article 109270"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012425010847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforced concrete (RC) columns constitute critical load-bearing components that determine structural safety under seismic actions. While conventional assessment methods relying on empirical formulas struggle to address complex multi-parameter interactions, this study proposes an interpretable Voting-based Optimization Tree Regression (VOTR) framework for multi-index seismic performance evaluation. A rigorously validated database of 145 experimental specimens was established, with data rationality confirmed through Pearson correlation and mutual information analysis. The VOTR model integrates Bayesian hyperparameter optimization with 10-fold cross-validation, demonstrating enhanced predictive accuracy over baseline machine learning methods in estimating ductility coefficients (Test R2 = 83.76 %) and yield displacements (Test R2 = 91.26 %). Through the analysis of data correlation and the significance of the SHAP model characteristics, it is found that the axial compression ratio, hoop ratio, and shear span ratio are the critical factors influencing ductility and yield displacement. The interpretability analysis bridges data-driven predictions with mechanical principles, revealing quantitative relationships between design parameters and seismic performance metrics. Comparative validations confirm the model's effectiveness in supporting performance-based seismic design optimization. This framework advances traditional prescriptive methods by providing a transparent, physics-informed assessment tool that balances computational accuracy with engineering interpretability for RC column safety evaluations.
采用投票集合法的钢筋混凝土柱可解释多指标地震评价框架
钢筋混凝土柱是决定结构在地震作用下安全性的关键承重构件。传统的基于经验公式的评估方法难以处理复杂的多参数相互作用,本研究提出了一种可解释的基于投票的优化树回归(VOTR)框架,用于多指标地震性能评估。建立了145个实验标本经过严格验证的数据库,通过Pearson相关和互信息分析证实了数据的合理性。VOTR模型将贝叶斯超参数优化与10倍交叉验证相结合,在估计延性系数(检验R2 = 83.76 %)和屈服位移(检验R2 = 91.26 %)方面显示出比基线机器学习方法更高的预测准确性。通过数据相关性分析和SHAP模型特征的意义分析,发现轴压比、环向比和剪跨比是影响延性和屈服位移的关键因素。可解释性分析将数据驱动的预测与力学原理联系起来,揭示了设计参数与抗震性能指标之间的定量关系。对比验证验证了该模型在支持基于性能的抗震设计优化方面的有效性。该框架通过提供透明的、物理知情的评估工具来推进传统的规定性方法,该工具可以平衡RC柱安全评估的计算准确性和工程可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信