{"title":"A structure-preserving discontinuous Galerkin scheme for the Cahn-Hilliard equation including time adaptivity","authors":"Golo A. Wimmer , Ben S. Southworth , Qi Tang","doi":"10.1016/j.jcp.2025.114097","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel spatial discretization for the Cahn-Hilliard equation including transport. The method is given by a mixed discretization for the two elliptic operators, with the phase field and chemical potential discretized in discontinuous Galerkin spaces, and two auxiliary flux variables discretized in a divergence-conforming space. This allows for the use of an upwind-stabilized discretization for the transport term, while still ensuring a consistent treatment of structural properties including mass conservation and energy dissipation. Further, we couple the novel spatial discretization to an adaptive time stepping method in view of the Cahn-Hilliard equation’s distinct slow and fast time scale dynamics. The resulting implicit stages are solved with a robust preconditioning strategy, which is derived for our novel spatial discretization based on an existing one for continuous Galerkin based discretizations. Our overall scheme’s accuracy, robustness, efficient time adaptivity as well as structure preservation and stability with respect to advection dominated scenarios are demonstrated in a series of numerical tests.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"537 ","pages":"Article 114097"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003808","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel spatial discretization for the Cahn-Hilliard equation including transport. The method is given by a mixed discretization for the two elliptic operators, with the phase field and chemical potential discretized in discontinuous Galerkin spaces, and two auxiliary flux variables discretized in a divergence-conforming space. This allows for the use of an upwind-stabilized discretization for the transport term, while still ensuring a consistent treatment of structural properties including mass conservation and energy dissipation. Further, we couple the novel spatial discretization to an adaptive time stepping method in view of the Cahn-Hilliard equation’s distinct slow and fast time scale dynamics. The resulting implicit stages are solved with a robust preconditioning strategy, which is derived for our novel spatial discretization based on an existing one for continuous Galerkin based discretizations. Our overall scheme’s accuracy, robustness, efficient time adaptivity as well as structure preservation and stability with respect to advection dominated scenarios are demonstrated in a series of numerical tests.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.