Modulation of electronic and piezoelectric properties of lead-free halide perovskites LiSnX3 (X = Cl, Br, and I) under applied pressure

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Celestine , R. Zosiamliana , Bernard Lalroliana , Lalhum Hima , Shivraj Gurung , Lalhriat Zuala , Lalmuanpuia Vanchhawng , A. Laref , D.P. Rai
{"title":"Modulation of electronic and piezoelectric properties of lead-free halide perovskites LiSnX3 (X = Cl, Br, and I) under applied pressure","authors":"L. Celestine ,&nbsp;R. Zosiamliana ,&nbsp;Bernard Lalroliana ,&nbsp;Lalhum Hima ,&nbsp;Shivraj Gurung ,&nbsp;Lalhriat Zuala ,&nbsp;Lalmuanpuia Vanchhawng ,&nbsp;A. Laref ,&nbsp;D.P. Rai","doi":"10.1016/j.matchemphys.2025.130961","DOIUrl":null,"url":null,"abstract":"<div><div>Pb-based perovskites are considered to be the most efficient materials for energy harvest. However, real-time application is limited because of their toxicity. As a result, lead-free perovskites that offer similar advantages are potential alternatives. Here, we have chosen <span><math><msub><mrow><mi>LiSnX</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (X <span><math><mo>=</mo></math></span> Cl, Br, and I) for further calculation and explore its possibilities for harvesting clean and green energy. Our objective is to examine strategies for optimizing the parameters that control the energy-harvesting capabilities, particularly the interplay between structural variations and electrical properties. The density functional theory (DFT) has been employed for the theoretical simulation. Within the DFT framework, we have studied the effect of applied pressure (0 to 20 GPa) and elemental substitution on their physical properties. We hereby report the variation of lattice parameters, elastic constants, band gaps, and piezoelectric constants. MD simulation with time steps of up to 5 ps was performed to verify structural stability at room temperature. We report the semi-conducting characteristic of <span><math><msub><mrow><mi>LiSnX</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> with a high piezoelectric response up to 20.7 C/m<sup>2</sup> by <span><math><msub><mrow><mi>LiSnBr</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> at 15 GPa. The presence of high piezoelectric coefficients suggests that manipulation of the structure of <span><math><msub><mrow><mi>LiSnX</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> may provide an alternative way to harvest energy through electromechanical processes.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"343 ","pages":"Article 130961"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425006078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pb-based perovskites are considered to be the most efficient materials for energy harvest. However, real-time application is limited because of their toxicity. As a result, lead-free perovskites that offer similar advantages are potential alternatives. Here, we have chosen LiSnX3 (X = Cl, Br, and I) for further calculation and explore its possibilities for harvesting clean and green energy. Our objective is to examine strategies for optimizing the parameters that control the energy-harvesting capabilities, particularly the interplay between structural variations and electrical properties. The density functional theory (DFT) has been employed for the theoretical simulation. Within the DFT framework, we have studied the effect of applied pressure (0 to 20 GPa) and elemental substitution on their physical properties. We hereby report the variation of lattice parameters, elastic constants, band gaps, and piezoelectric constants. MD simulation with time steps of up to 5 ps was performed to verify structural stability at room temperature. We report the semi-conducting characteristic of LiSnX3 with a high piezoelectric response up to 20.7 C/m2 by LiSnBr3 at 15 GPa. The presence of high piezoelectric coefficients suggests that manipulation of the structure of LiSnX3 may provide an alternative way to harvest energy through electromechanical processes.
无铅卤化物钙钛矿LiSnX3 (X = Cl, Br和I)在施加压力下的电子和压电特性调制
铅基钙钛矿被认为是最有效的能量收集材料。然而,由于它们的毒性,其实时应用受到限制。因此,具有类似优势的无铅钙钛矿是潜在的替代品。在这里,我们选择了LiSnX3 (X = Cl, Br和I)进行进一步的计算,并探索其收集清洁和绿色能源的可能性。我们的目标是研究优化控制能量收集能力的参数的策略,特别是结构变化和电性能之间的相互作用。采用密度泛函理论(DFT)进行理论模拟。在DFT框架内,我们研究了施加压力(0 ~ 20gpa)和元素取代对其物理性质的影响。我们在此报告晶格参数、弹性常数、带隙和压电常数的变化。为了验证结构在室温下的稳定性,进行了时间步长高达5ps的MD模拟。我们报道了LiSnX3的半导体特性,LiSnBr3在15 GPa下具有高达20.7 C/m2的高压电响应。高压电系数的存在表明,操纵LiSnX3的结构可能提供一种通过机电过程收集能量的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信