Beyond elemental intrinsic characteristics: ΔHmixB−F-driven solid solution phase structure modeling in HEAs

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
K.X. Yin , Y. Yiliti , S.T. Li , C.Y. Zhang , Y.K. Zhou , H.F. Zhang , Z.W. Zhu
{"title":"Beyond elemental intrinsic characteristics: ΔHmixB−F-driven solid solution phase structure modeling in HEAs","authors":"K.X. Yin ,&nbsp;Y. Yiliti ,&nbsp;S.T. Li ,&nbsp;C.Y. Zhang ,&nbsp;Y.K. Zhou ,&nbsp;H.F. Zhang ,&nbsp;Z.W. Zhu","doi":"10.1016/j.intermet.2025.108838","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative approach for predicting solid-solution phase structures in high-entropy alloys (HEAs) by integrating a thermodynamic mixing enthalpy difference parameter <span><math><mrow><mo>Δ</mo><msubsup><mi>H</mi><mtext>mix</mtext><mrow><mi>B</mi><mo>−</mo><mi>F</mi></mrow></msubsup></mrow></math></span>—quantifying inter-element interactions between BCC and FCC structures—with conventional descriptors representing elemental intrinsic properties, including valence electron concentration (VEC), atomic size mismatch (δ), and Gibbs free energy differences of pure elements in dual-phase configurations (<span><math><mrow><mo>Δ</mo><msub><mi>G</mi><mn>0</mn></msub></mrow></math></span>). This synergistic framework significantly enhances the predictive accuracy for solid solution phase structures in HEAs, achieving a classification consistency rate (CCR) of 94.9 % across 569 HEA systems through the combined VEC+ <span><math><mrow><mo>Δ</mo><msubsup><mi>H</mi><mtext>mix</mtext><mrow><mi>B</mi><mo>−</mo><mi>F</mi></mrow></msubsup></mrow></math></span> parameter. To validate the methodology, a series of unreported transition-metal-rich AlCoCrNiV-based HEAs were synthesized and systematically characterized via X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) with microchemical analysis. The experimental observations exhibit excellent agreement between the predicted phase constitutions and the observed structural features, demonstrating the reliability and practical applicability of the proposed strategy. This work establishes a robust foundation for rational HEA design and provides critical guidance for advancing predictive frameworks in multi-component alloy systems through the integration of thermodynamic principles and empirical descriptors.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"184 ","pages":"Article 108838"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525002031","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative approach for predicting solid-solution phase structures in high-entropy alloys (HEAs) by integrating a thermodynamic mixing enthalpy difference parameter ΔHmixBF—quantifying inter-element interactions between BCC and FCC structures—with conventional descriptors representing elemental intrinsic properties, including valence electron concentration (VEC), atomic size mismatch (δ), and Gibbs free energy differences of pure elements in dual-phase configurations (ΔG0). This synergistic framework significantly enhances the predictive accuracy for solid solution phase structures in HEAs, achieving a classification consistency rate (CCR) of 94.9 % across 569 HEA systems through the combined VEC+ ΔHmixBF parameter. To validate the methodology, a series of unreported transition-metal-rich AlCoCrNiV-based HEAs were synthesized and systematically characterized via X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) with microchemical analysis. The experimental observations exhibit excellent agreement between the predicted phase constitutions and the observed structural features, demonstrating the reliability and practical applicability of the proposed strategy. This work establishes a robust foundation for rational HEA design and provides critical guidance for advancing predictive frameworks in multi-component alloy systems through the integration of thermodynamic principles and empirical descriptors.
超越元素固有特性:ΔHmixB−f驱动的固溶相结构建模在HEAs
本研究引入了一种预测高熵合金(HEAs)固溶相结构的创新方法,该方法将热力学混合焓差参数ΔHmixB−f(量化BCC和FCC结构之间的元素间相互作用)与代表元素固有性质的常规描述子(包括价电子浓度(VEC)、原子尺寸失配(δ)、纯元素双相构型的吉布斯自由能差(ΔG0)。该协同框架显著提高了HEA中固溶体结构的预测精度,通过VEC+ ΔHmixB−F参数的组合,在569个HEA体系中实现了94.9%的分类一致性率(CCR)。为了验证该方法,合成了一系列未报道的富含过渡金属的alcocrniv基HEAs,并通过x射线衍射(XRD),场发射扫描电子显微镜(FESEM)结合能量色散光谱(EDS)和透射电子显微镜(TEM)结合微化学分析进行了系统表征。实验结果表明,预测的相结构与观测到的结构特征非常吻合,证明了该策略的可靠性和实用性。这项工作为合理的HEA设计奠定了坚实的基础,并通过热力学原理和经验描述符的整合,为推进多组分合金系统的预测框架提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信