Liver and intestine transcriptome analysis reveals molecular mechanisms of phytase-driven nutrient utilization and metabolic regulation in hybrid catfish
Dongdong Zhang , Eric Peatman , Benjamin H. Beck , Honggang Zhao , James Mazzola , Baofeng Su , Ahmed Elaswad , Zhi Ye
{"title":"Liver and intestine transcriptome analysis reveals molecular mechanisms of phytase-driven nutrient utilization and metabolic regulation in hybrid catfish","authors":"Dongdong Zhang , Eric Peatman , Benjamin H. Beck , Honggang Zhao , James Mazzola , Baofeng Su , Ahmed Elaswad , Zhi Ye","doi":"10.1016/j.cbd.2025.101539","DOIUrl":null,"url":null,"abstract":"<div><div>The use of phytase in aquafeeds has gained increasing attention as a strategy to enhance nutritional value and mitigate the adverse effects of phytic acid, especially for diets containing plant-based ingredients. Notwithstanding examples of phytase-induced phenotypic changes, the molecular mechanisms underlying phytase supplementation are not well understood. The present study evaluated the effects of phytase on the transcriptomic profiles in the liver and intestine, as well as on growth, feed conversion ratio (FCR), and hematological parameters of Jubilee × D&B hybrid catfish. Over a 140-day feeding trial, phytase supplementation (2500 phytase units/kg diet) significantly improved growth, FCR, red blood cell count, hematocrit, and total cell count in the blood compared with fish fed the basal diet. By comparing the transcriptomic profiles of phytase-supplemented and control fish, we identified a distinct gene expression profile relative to controls. This profile was characterized by differentially expressed genes (DEGs) associated with mineral metabolism (including iron), energy homeostasis, protein synthesis, carbohydrate and lipid metabolism, and immune response. The putative roles of key DEGs, including their interactions in different metabolic pathways, are discussed. The current study explains the benefits of phytase supplementation on hybrid catfish performance on the molecular level, uncovers the transcriptomic mechanisms controlling these benefits, and provides valuable information for customized functional feeds in aquaculture.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"56 ","pages":"Article 101539"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25001285","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of phytase in aquafeeds has gained increasing attention as a strategy to enhance nutritional value and mitigate the adverse effects of phytic acid, especially for diets containing plant-based ingredients. Notwithstanding examples of phytase-induced phenotypic changes, the molecular mechanisms underlying phytase supplementation are not well understood. The present study evaluated the effects of phytase on the transcriptomic profiles in the liver and intestine, as well as on growth, feed conversion ratio (FCR), and hematological parameters of Jubilee × D&B hybrid catfish. Over a 140-day feeding trial, phytase supplementation (2500 phytase units/kg diet) significantly improved growth, FCR, red blood cell count, hematocrit, and total cell count in the blood compared with fish fed the basal diet. By comparing the transcriptomic profiles of phytase-supplemented and control fish, we identified a distinct gene expression profile relative to controls. This profile was characterized by differentially expressed genes (DEGs) associated with mineral metabolism (including iron), energy homeostasis, protein synthesis, carbohydrate and lipid metabolism, and immune response. The putative roles of key DEGs, including their interactions in different metabolic pathways, are discussed. The current study explains the benefits of phytase supplementation on hybrid catfish performance on the molecular level, uncovers the transcriptomic mechanisms controlling these benefits, and provides valuable information for customized functional feeds in aquaculture.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.