An enhanced Walrus Optimizer with opposition-based learning and mutation strategy for data clustering

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-05-19 DOI:10.1016/j.array.2025.100409
Laith Abualigah , Saleh Ali Alomari , Mohammad H. Almomani , Raed Abu Zitar , Hazem Migdady , Kashif Saleem , Aseel Smerat , Vaclav Snasel , Absalom E. Ezugwu
{"title":"An enhanced Walrus Optimizer with opposition-based learning and mutation strategy for data clustering","authors":"Laith Abualigah ,&nbsp;Saleh Ali Alomari ,&nbsp;Mohammad H. Almomani ,&nbsp;Raed Abu Zitar ,&nbsp;Hazem Migdady ,&nbsp;Kashif Saleem ,&nbsp;Aseel Smerat ,&nbsp;Vaclav Snasel ,&nbsp;Absalom E. Ezugwu","doi":"10.1016/j.array.2025.100409","DOIUrl":null,"url":null,"abstract":"<div><div>Data clustering plays a crucial role in various domains, such as image processing, pattern recognition, and data mining. Traditional clustering techniques often suffer from limitations like sensitivity to initialization, poor convergence, and entrapment in local optima. To address these challenges, this paper proposes an Enhanced Walrus Optimizer (IWO) tailored for clustering tasks. The proposed IWO integrates two powerful strategies–Opposition-Based Learning (OBL) and Mutation Search Strategy (MSS)–to improve population diversity and prevent premature convergence, thereby enhancing both exploration and exploitation capabilities. These enhancements enable more accurate and stable identification of cluster centers. The effectiveness of IWO is validated through extensive experiments on multiple benchmark clustering datasets and compared against several state-of-the-art metaheuristic algorithms, including PSO, GWO, AOA, and others. The results demonstrate that IWO achieves better results, indicating improved compactness and separation of clusters. Statistical validation using p-values and ranking scores further confirms the superiority of the proposed method. These findings suggest that IWO offers a robust and flexible framework for solving complex clustering problems. Future work will explore hybrid deep learning-integrated models and parallel implementations to enhance scalability.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100409"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Data clustering plays a crucial role in various domains, such as image processing, pattern recognition, and data mining. Traditional clustering techniques often suffer from limitations like sensitivity to initialization, poor convergence, and entrapment in local optima. To address these challenges, this paper proposes an Enhanced Walrus Optimizer (IWO) tailored for clustering tasks. The proposed IWO integrates two powerful strategies–Opposition-Based Learning (OBL) and Mutation Search Strategy (MSS)–to improve population diversity and prevent premature convergence, thereby enhancing both exploration and exploitation capabilities. These enhancements enable more accurate and stable identification of cluster centers. The effectiveness of IWO is validated through extensive experiments on multiple benchmark clustering datasets and compared against several state-of-the-art metaheuristic algorithms, including PSO, GWO, AOA, and others. The results demonstrate that IWO achieves better results, indicating improved compactness and separation of clusters. Statistical validation using p-values and ranking scores further confirms the superiority of the proposed method. These findings suggest that IWO offers a robust and flexible framework for solving complex clustering problems. Future work will explore hybrid deep learning-integrated models and parallel implementations to enhance scalability.
基于对立学习和突变策略的数据聚类增强Walrus优化器
数据聚类在图像处理、模式识别、数据挖掘等领域中发挥着至关重要的作用。传统的聚类技术经常受到一些限制,比如对初始化的敏感性、较差的收敛性和局部最优的困住。为了解决这些挑战,本文提出了一种针对集群任务量身定制的增强型海象优化器(IWO)。提出的IWO集成了两种强大的策略——基于对立的学习(OBL)和突变搜索策略(MSS),以改善种群多样性和防止过早收敛,从而提高探索和开发能力。这些增强功能可以更准确、更稳定地识别集群中心。IWO的有效性通过在多个基准聚类数据集上进行大量实验来验证,并与几种最先进的元启发式算法(包括PSO、GWO、AOA等)进行比较。结果表明,IWO方法取得了更好的效果,表明簇的紧凑性和分离性得到了提高。使用p值和排名分数的统计验证进一步证实了所提出方法的优越性。这些发现表明IWO为解决复杂的聚类问题提供了一个强大而灵活的框架。未来的工作将探索混合深度学习集成模型和并行实现,以增强可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信