Novel thermotropic system with UV-blocking ability for dynamic radiative cooling and synchronous visible/NIR tuning of windows in buildings in hot climate regions
IF 6.7 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Paulo Joaquim Nunes , Mariana Fernandes , Verónica de Zea Bermudez
{"title":"Novel thermotropic system with UV-blocking ability for dynamic radiative cooling and synchronous visible/NIR tuning of windows in buildings in hot climate regions","authors":"Paulo Joaquim Nunes , Mariana Fernandes , Verónica de Zea Bermudez","doi":"10.1016/j.jsamd.2025.100907","DOIUrl":null,"url":null,"abstract":"<div><div>Passive dynamic thermotropic (TT) radiative cooling (RC) windows aid net-zero energy buildings in smart cities by adjusting sunlight and solar heat in response to temperature variations, as they become opaque when temperatures rise, thereby using thermal radiation to dissipate heat into outer space. They are ideal for controlling solar heat gain and privacy. Here, we introduce a innovative eco-friendly TT layer with ultraviolet (UV)-shielding and RC ability composed of a sol-gel derived di-ureasil hybrid matrix doped with carbon dots (CDs) obtained from <em>Agapanthus africanus</em> leaves and variable contents of TT 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The layers exhibit high transparency and thermal stability. The thermotropic devices (TTDs) assembled demonstrated, at the highest [BMIm]Cl concentration used, improved thermo-optical performance mediated by the surface plasmon resonance effect (SPRE), broad operational range (30–70 °C), and excellent cycling stability. Maximum transmittance variation (ΔT) values of 31/27 % at 555/1100 nm were achieved. This new class of TT layer represents a milestone in the development of smart RC materials for autonomous solar modulation windows.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 3","pages":"Article 100907"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217925000607","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Passive dynamic thermotropic (TT) radiative cooling (RC) windows aid net-zero energy buildings in smart cities by adjusting sunlight and solar heat in response to temperature variations, as they become opaque when temperatures rise, thereby using thermal radiation to dissipate heat into outer space. They are ideal for controlling solar heat gain and privacy. Here, we introduce a innovative eco-friendly TT layer with ultraviolet (UV)-shielding and RC ability composed of a sol-gel derived di-ureasil hybrid matrix doped with carbon dots (CDs) obtained from Agapanthus africanus leaves and variable contents of TT 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The layers exhibit high transparency and thermal stability. The thermotropic devices (TTDs) assembled demonstrated, at the highest [BMIm]Cl concentration used, improved thermo-optical performance mediated by the surface plasmon resonance effect (SPRE), broad operational range (30–70 °C), and excellent cycling stability. Maximum transmittance variation (ΔT) values of 31/27 % at 555/1100 nm were achieved. This new class of TT layer represents a milestone in the development of smart RC materials for autonomous solar modulation windows.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.