Knowledge-based model for automated multi-isocenter total marrow and lymphoid irradiation planning across standard and large patient anatomies

IF 3.4 Q2 ONCOLOGY
Manuela Meraldi , Nicola Lambri , Damiano Dei , Piera Navarria , Giacomo Reggiori , Ciro Franzese , Stefano Tomatis , Cristina Lenardi , Marta Scorsetti , Pietro Mancosu
{"title":"Knowledge-based model for automated multi-isocenter total marrow and lymphoid irradiation planning across standard and large patient anatomies","authors":"Manuela Meraldi ,&nbsp;Nicola Lambri ,&nbsp;Damiano Dei ,&nbsp;Piera Navarria ,&nbsp;Giacomo Reggiori ,&nbsp;Ciro Franzese ,&nbsp;Stefano Tomatis ,&nbsp;Cristina Lenardi ,&nbsp;Marta Scorsetti ,&nbsp;Pietro Mancosu","doi":"10.1016/j.phro.2025.100781","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Total marrow and lymphoid irradiation (TMLI) planning is challenging. This study evaluates whether a knowledge-based (KB) model for TMLI delivered using volumetric modulated arc therapy (VMAT) can achieve clinically acceptable dose distributions through fully or semi-automated optimization and whether a single model is effective across varying patient anatomies.</div></div><div><h3>Materials and methods</h3><div>Fifty-one consecutive VMAT-TMLI patients were selected. A KB model was trained using 30 patients treated with standard configurations (5 body isocenters). Validation included two cohorts: 10 standard patients and 11 patients with a larger anatomy treated using separate isocenters for the arms (4 body and 2 arms isocenters). Two planning approaches were explored: fully automated (AutoKB), and KB with manual adjustments (HybridKB) by a planner with no prior experience in TMLI. KB plans were evaluated against clinical plans (CPs) using paired t-tests.</div></div><div><h3>Results</h3><div>The KB model reduced mean doses to major organs-at-risk (OARs). For standard configurations, mean OAR doses were 71% ± 2%, 66% ± 2%, and 66% ± 2% for CP, AutoKB, and HybridKB (both p &lt; 0.01). For larger patients, the corresponding values were 75% ± 3%, 69% ± 2%, and 68% ± 2% (both p &lt; 0.01). D2% of the planning target volume increased in AutoKB, reaching 122% ± 2% (p &lt; 0.001) vs. 117% ± 3% in CP for standard configurations, and 126% ± 2% (p &lt; 0.001) vs. 117% ± 3% in CP for arms configurations. HybridKB was on par with CPs.</div></div><div><h3>Conclusions</h3><div>A single KB model enabled effective planning for multi-isocenter TMLI, including anatomies requiring separate isocenters for the arms. Fully automated KB provided suboptimal dose distributions. KB with manual refinements reduced planner dependence and improved plan quality.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100781"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Total marrow and lymphoid irradiation (TMLI) planning is challenging. This study evaluates whether a knowledge-based (KB) model for TMLI delivered using volumetric modulated arc therapy (VMAT) can achieve clinically acceptable dose distributions through fully or semi-automated optimization and whether a single model is effective across varying patient anatomies.

Materials and methods

Fifty-one consecutive VMAT-TMLI patients were selected. A KB model was trained using 30 patients treated with standard configurations (5 body isocenters). Validation included two cohorts: 10 standard patients and 11 patients with a larger anatomy treated using separate isocenters for the arms (4 body and 2 arms isocenters). Two planning approaches were explored: fully automated (AutoKB), and KB with manual adjustments (HybridKB) by a planner with no prior experience in TMLI. KB plans were evaluated against clinical plans (CPs) using paired t-tests.

Results

The KB model reduced mean doses to major organs-at-risk (OARs). For standard configurations, mean OAR doses were 71% ± 2%, 66% ± 2%, and 66% ± 2% for CP, AutoKB, and HybridKB (both p < 0.01). For larger patients, the corresponding values were 75% ± 3%, 69% ± 2%, and 68% ± 2% (both p < 0.01). D2% of the planning target volume increased in AutoKB, reaching 122% ± 2% (p < 0.001) vs. 117% ± 3% in CP for standard configurations, and 126% ± 2% (p < 0.001) vs. 117% ± 3% in CP for arms configurations. HybridKB was on par with CPs.

Conclusions

A single KB model enabled effective planning for multi-isocenter TMLI, including anatomies requiring separate isocenters for the arms. Fully automated KB provided suboptimal dose distributions. KB with manual refinements reduced planner dependence and improved plan quality.
基于知识的模型,自动多等中心全骨髓和淋巴细胞辐照计划跨越标准和大病人解剖
背景与目的全骨髓和淋巴细胞放射治疗(TMLI)计划具有挑战性。本研究评估了基于知识(KB)的TMLI模型是否可以通过全自动或半自动优化实现临床可接受的剂量分布,以及单一模型是否适用于不同的患者解剖结构。材料与方法选择51例VMAT-TMLI患者。使用标准配置(5个身体等中心点)治疗的30例患者训练KB模型。验证包括两个队列:10名标准患者和11名解剖结构较大的患者使用单独的手臂等中心点(4个身体和2个手臂等中心点)进行治疗。研究了两种规划方法:全自动(AutoKB)和手动调整的KB (HybridKB),由没有TMLI经验的规划人员进行。使用配对t检验对KB计划与临床计划(CPs)进行评估。结果KB模型降低了主要危险器官(OARs)的平均剂量。对于标准配置,CP、AutoKB和HybridKB的平均OAR剂量分别为71%±2%、66%±2%和66%±2% (p <;0.01)。对于体型较大的患者,相应值分别为75%±3%、69%±2%和68%±2% (p <;0.01)。规划目标体积的D2%在AutoKB中增加,达到122%±2% (p <;0.001),而标准配置的CP为117%±3%,126%±2% (p <;0.001) vs.武器配置的CP为117%±3%。HybridKB与CPs相当。结论单一KB模型可以有效地规划多等心TMLI,包括手臂需要单独等心的解剖。全自动KB提供了次优剂量分布。人工改进的知识库减少了对计划人员的依赖并提高了计划质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信