{"title":"Self-reversible generalized (L,G)-codes","authors":"Sergey Bezzateev, Natalia Shekhunova","doi":"10.1007/s10623-025-01648-2","DOIUrl":null,"url":null,"abstract":"<p>We consider a subclass of <i>p</i>-ary self-reversible generalized (<i>L</i>, <i>G</i>) codes with a locator set <span>\\(L=\\{ \\frac{2x-\\alpha }{x^2-\\alpha x +1},\\alpha \\in \\mathbb {F}_q \\setminus \\{0\\}, q=p^m \\} \\cup \\{\\frac{1}{x+1}\\}\\)</span>, where <i>p</i> is a prime number. The numerator <span>\\(2x-\\alpha \\)</span> of a rational function is the formal derivative of the denominator <span>\\(x^2-\\alpha x +1\\)</span>. The Goppa polynomial <span>\\(G(x) \\in \\mathbb {F}_q[x]\\)</span> of degree 2<i>t</i>, <i>t</i> being odd, is either an irreducible self-reversible polynomial of degree 2<i>t</i>, or a non-irreducible self-reversible polynomial of degree 2<i>t</i> of the form <span>\\(G_1^{-1}(0)\\cdot G_1(x)\\cdot x^t\\cdot G_1(x^{-1})\\)</span>, where <span>\\(G_1(x)\\in \\mathbb {F}_q[x]\\)</span> is any irreducible non self-reversible polynomial of degree <i>t</i>. Estimates for minimum distance and redundancy are obtained for codes from this subclass. It is shown that among these codes, there are codes lying on the Gilbert–Varshamov bound. As a special case, binary codes from this subclass that contains codes lying also on Gilbert–Varshamov bound are considered.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"45 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01648-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a subclass of p-ary self-reversible generalized (L, G) codes with a locator set \(L=\{ \frac{2x-\alpha }{x^2-\alpha x +1},\alpha \in \mathbb {F}_q \setminus \{0\}, q=p^m \} \cup \{\frac{1}{x+1}\}\), where p is a prime number. The numerator \(2x-\alpha \) of a rational function is the formal derivative of the denominator \(x^2-\alpha x +1\). The Goppa polynomial \(G(x) \in \mathbb {F}_q[x]\) of degree 2t, t being odd, is either an irreducible self-reversible polynomial of degree 2t, or a non-irreducible self-reversible polynomial of degree 2t of the form \(G_1^{-1}(0)\cdot G_1(x)\cdot x^t\cdot G_1(x^{-1})\), where \(G_1(x)\in \mathbb {F}_q[x]\) is any irreducible non self-reversible polynomial of degree t. Estimates for minimum distance and redundancy are obtained for codes from this subclass. It is shown that among these codes, there are codes lying on the Gilbert–Varshamov bound. As a special case, binary codes from this subclass that contains codes lying also on Gilbert–Varshamov bound are considered.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.