Maintainability and Scalability in Machine Learning: Challenges and Solutions

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Karthik Shivashankar, Ghadi Al Hajj, Antonio Martini
{"title":"Maintainability and Scalability in Machine Learning: Challenges and Solutions","authors":"Karthik Shivashankar, Ghadi Al Hajj, Antonio Martini","doi":"10.1145/3736751","DOIUrl":null,"url":null,"abstract":"Rapid advancements in Machine Learning (ML) introduce unique maintainability and scalability challenges. Our research addresses the evolving challenges and identifies ML maintainability and scalability solutions by conducting a thorough literature review of over 17,000 papers, ultimately refining our focus to 124 relevant sources that meet our stringent selection criteria. We present a catalogue of 41 Maintainability and 13 Scalability challenges and solutions across Data, Model Engineering and the overall development of ML applications and systems. This study equips practitioners with insights on building robust ML applications, laying the groundwork for future research on improving ML system robustness at different workflow stages.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"6 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3736751","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advancements in Machine Learning (ML) introduce unique maintainability and scalability challenges. Our research addresses the evolving challenges and identifies ML maintainability and scalability solutions by conducting a thorough literature review of over 17,000 papers, ultimately refining our focus to 124 relevant sources that meet our stringent selection criteria. We present a catalogue of 41 Maintainability and 13 Scalability challenges and solutions across Data, Model Engineering and the overall development of ML applications and systems. This study equips practitioners with insights on building robust ML applications, laying the groundwork for future research on improving ML system robustness at different workflow stages.
机器学习中的可维护性和可扩展性:挑战和解决方案
机器学习(ML)的快速发展带来了独特的可维护性和可扩展性挑战。我们的研究解决了不断变化的挑战,并通过对超过17,000篇论文进行彻底的文献综述,确定了机器学习可维护性和可扩展性解决方案,最终将我们的重点细化到124个符合我们严格选择标准的相关来源。我们提出了41个可维护性和13个可扩展性挑战和解决方案,涉及数据、模型工程和ML应用程序和系统的整体开发。本研究为从业者提供了构建健壮的机器学习应用程序的见解,为未来在不同工作流程阶段提高机器学习系统健壮性的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信