High-Rate Measurement-Device-Independent Quantum Communication without Optical Reference Light

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shan-Feng Shao, Lai Zhou, Jinping Lin, Mariella Minder, Chengfang Ge, Yuan-Mei Xie, Ao Shen, Zhengyu Yan, Hua-Lei Yin, Zhiliang Yuan
{"title":"High-Rate Measurement-Device-Independent Quantum Communication without Optical Reference Light","authors":"Shan-Feng Shao, Lai Zhou, Jinping Lin, Mariella Minder, Chengfang Ge, Yuan-Mei Xie, Ao Shen, Zhengyu Yan, Hua-Lei Yin, Zhiliang Yuan","doi":"10.1103/physrevx.15.021066","DOIUrl":null,"url":null,"abstract":"In the realm of long-distance quantum communication, asynchronous measurement-device-independent quantum key distribution (AMDI-QKD) stands out for its experimental simplicity and high key rate generation. Despite these advantages, there exists a challenge in finding a balance between simplifying the laser system further and achieving high key rates. To address this challenge, we have devised a postmeasurement compensation scheme to accurately estimate the mutual frequency offset between two compact lasers using just the announced quantum-signal detection results, thereby obviating the need for optical reference light. As a result, we demonstrate an AMDI-QKD system operating at 2.5 GHz and achieving secure key rates (SKRs) of 537 and 101</a:mn></a:mtext></a:mtext>kbit</a:mi>/</a:mo>s</a:mi></a:mrow></a:math> at distances of 100 and 201 km, respectively, showcasing a significant key rate improvement compared to similar setups. By leveraging ultrastable lasers, we achieve the highest SKRs with measurement-device-independent security within the 100–400-km range. Over 100 km, we reach a remarkable key rate of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mn>1.03</d:mn><d:mtext> </d:mtext><d:mtext> </d:mtext><d:mi>Mbit</d:mi><d:mo>/</d:mo><d:mi mathvariant=\"normal\">s</d:mi></d:mrow></d:math>, which could enable real-time one-time-pad video encryption. These findings render AMDI-QKD as a promising contender for the establishment of high performance and cost-effective large-scale intercity quantum networks. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021066","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of long-distance quantum communication, asynchronous measurement-device-independent quantum key distribution (AMDI-QKD) stands out for its experimental simplicity and high key rate generation. Despite these advantages, there exists a challenge in finding a balance between simplifying the laser system further and achieving high key rates. To address this challenge, we have devised a postmeasurement compensation scheme to accurately estimate the mutual frequency offset between two compact lasers using just the announced quantum-signal detection results, thereby obviating the need for optical reference light. As a result, we demonstrate an AMDI-QKD system operating at 2.5 GHz and achieving secure key rates (SKRs) of 537 and 101kbit/s at distances of 100 and 201 km, respectively, showcasing a significant key rate improvement compared to similar setups. By leveraging ultrastable lasers, we achieve the highest SKRs with measurement-device-independent security within the 100–400-km range. Over 100 km, we reach a remarkable key rate of 1.03 Mbit/s, which could enable real-time one-time-pad video encryption. These findings render AMDI-QKD as a promising contender for the establishment of high performance and cost-effective large-scale intercity quantum networks. Published by the American Physical Society 2025
无光学参考光的高速率测量器件无关量子通信
在远程量子通信领域,异步测量设备无关量子密钥分发(AMDI-QKD)以其实验简单和高密钥生成速率而脱颖而出。尽管有这些优势,但在进一步简化激光系统和实现高密钥率之间找到平衡仍然存在挑战。为了解决这一挑战,我们设计了一种测量后补偿方案,仅使用已公布的量子信号检测结果来准确估计两个紧凑激光器之间的互频偏移,从而消除了对光学参考光的需求。因此,我们展示了一个工作在2.5 GHz的AMDI-QKD系统,在100公里和201公里的距离上分别实现了537和101kbit/s的安全密钥速率(skr),与类似的设置相比,显示了显着的密钥速率改进。通过利用超稳定激光器,我们在100 - 400公里范围内实现了与测量设备无关的最高skr。在100公里以上,我们达到了1.03 Mbit/s的密钥速率,可以实现实时的一次性视频加密。这些发现使AMDI-QKD成为建立高性能和具有成本效益的大规模城际量子网络的有希望的竞争者。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信