Establishing Dual-Interface Built-In Electric Fields within Janus Heterostructures for Cooperative Photoredox Catalysis.

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Wen Han,Yu-Xin Zhang,Lei Ye,Tian-Jun Gong,Xue-Bin Lu,Ning Yan,Yao Fu
{"title":"Establishing Dual-Interface Built-In Electric Fields within Janus Heterostructures for Cooperative Photoredox Catalysis.","authors":"Yi-Wen Han,Yu-Xin Zhang,Lei Ye,Tian-Jun Gong,Xue-Bin Lu,Ning Yan,Yao Fu","doi":"10.1021/jacs.5c01171","DOIUrl":null,"url":null,"abstract":"Rationally designing nanostructures and comprehensively understanding the structure-property relationships are important for directional charge transfer. A general dual-interface built-in electric field (BIEF) regulation strategy is developed to synthesize the bifunctional ZnS/Sv-chalcogenide/Ti3C2 heterostructure photocatalysts (Sv represents sulfur vacancies; chalcogenides include ZnIn2S4, CdS, and CdIn2S4) consisting of a ZnS/chalcogenide S-scheme heterojunction and a Sv-chalcogenide/Ti3C2 Schottky heterojunction. The ternary-component photocatalyst construction involves hollow core-shell heterostructure establishment via lateral epitaxy and chalcogenide-surface Ti3C2 nanoparticle introduction via a defect-mediated heterocomponent anchorage. These nanoreactors integrate the strong intrinsic driving force and enhanced interfacial electronic coupling, leveraging resulting dual-interface BIEFs for precise carrier mobility control and robust redox performance feedback. The BIEF-induced ultrafast charge transfer features powerful photocarrier enrichment and feeble photocarrier recombination at the ZnS/ZnIn2S4 S-scheme heterointerface as well as continuous steering of photocarrier localization and delocalized electron transport at the Sv-ZnIn2S4/Ti3C2 Schottky heterointerface. Simultaneously, BIEF-induced targeted molecule catalysis is marked by complementary adsorption and selective activation of key intermediates. Representative ZnS/Sv-ZnIn2S4/Ti3C2 demonstrates broad substrate compatibility and superhigh reactivity in cooperative biomass valorization and hydrogen evolution. This study provides a programmable framework for manipulating BIEFs by multicomponent ordered-space integration and interface engineering, elucidating the substantial impact of dual-interface BIEFs on carrier transport behavior and molecular catalytic behavior.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"15 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01171","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rationally designing nanostructures and comprehensively understanding the structure-property relationships are important for directional charge transfer. A general dual-interface built-in electric field (BIEF) regulation strategy is developed to synthesize the bifunctional ZnS/Sv-chalcogenide/Ti3C2 heterostructure photocatalysts (Sv represents sulfur vacancies; chalcogenides include ZnIn2S4, CdS, and CdIn2S4) consisting of a ZnS/chalcogenide S-scheme heterojunction and a Sv-chalcogenide/Ti3C2 Schottky heterojunction. The ternary-component photocatalyst construction involves hollow core-shell heterostructure establishment via lateral epitaxy and chalcogenide-surface Ti3C2 nanoparticle introduction via a defect-mediated heterocomponent anchorage. These nanoreactors integrate the strong intrinsic driving force and enhanced interfacial electronic coupling, leveraging resulting dual-interface BIEFs for precise carrier mobility control and robust redox performance feedback. The BIEF-induced ultrafast charge transfer features powerful photocarrier enrichment and feeble photocarrier recombination at the ZnS/ZnIn2S4 S-scheme heterointerface as well as continuous steering of photocarrier localization and delocalized electron transport at the Sv-ZnIn2S4/Ti3C2 Schottky heterointerface. Simultaneously, BIEF-induced targeted molecule catalysis is marked by complementary adsorption and selective activation of key intermediates. Representative ZnS/Sv-ZnIn2S4/Ti3C2 demonstrates broad substrate compatibility and superhigh reactivity in cooperative biomass valorization and hydrogen evolution. This study provides a programmable framework for manipulating BIEFs by multicomponent ordered-space integration and interface engineering, elucidating the substantial impact of dual-interface BIEFs on carrier transport behavior and molecular catalytic behavior.
在Janus异质结构中建立双界面内置电场用于协同光氧化还原催化。
合理设计纳米结构,全面认识结构与性能之间的关系,对定向电荷转移具有重要意义。采用双界面内置电场(BIEF)调控策略合成了双功能ZnS/Sv-硫族化物/Ti3C2异质结构光催化剂(Sv代表硫空位;硫系化合物包括ZnIn2S4, CdS和CdIn2S4),由ZnS/硫系化合物S-scheme异质结和sv -硫系化合物/Ti3C2肖特基异质结组成。三组分光催化剂的构建包括通过横向外延建立空心核壳异质结构和通过缺陷介导的异质组分锚定引入硫系表面Ti3C2纳米颗粒。这些纳米反应器集成了强大的内在驱动力和增强的界面电子耦合,利用所产生的双界面bief进行精确的载流子迁移率控制和强大的氧化还原性能反馈。bieff诱导的超快电荷转移在ZnS/ZnIn2S4 S-scheme异质界面上具有强大的光载流子富集和微弱的光载流子复合,在Sv-ZnIn2S4/Ti3C2 Schottky异质界面上具有光载流子局域化和离域电子输运的连续转向。同时,bief诱导的靶向分子催化以关键中间体的互补吸附和选择性活化为特征。具有代表性的ZnS/Sv-ZnIn2S4/Ti3C2在生物质协同增值和析氢过程中表现出广泛的底物相容性和超高的反应活性。本研究提供了一个可编程的框架,通过多组分有序空间集成和界面工程来操纵BIEFs,阐明了双界面BIEFs对载流子输运行为和分子催化行为的实质性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信