Structural Basis for Medium-Chain Dehydrogenase/Reductase-Catalyzed Reductive Cyclization in Polycyclic Tetramate Macrolactam Biosynthesis.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangqian Xie,Fan Li,Yanxin Mu,Mengyao Lu,Jie Luo,Haoxin Wang,Yuemao Shen,Liangcheng Du,Deyu Zhu,Yaoyao Li
{"title":"Structural Basis for Medium-Chain Dehydrogenase/Reductase-Catalyzed Reductive Cyclization in Polycyclic Tetramate Macrolactam Biosynthesis.","authors":"Xiangqian Xie,Fan Li,Yanxin Mu,Mengyao Lu,Jie Luo,Haoxin Wang,Yuemao Shen,Liangcheng Du,Deyu Zhu,Yaoyao Li","doi":"10.1021/jacs.5c04971","DOIUrl":null,"url":null,"abstract":"Few enzymes are known to catalyze reductive cyclizations via nucleophile-mediated C-C bond formation. Medium-chain dehydrogenases/reductases (MDRs) typically function as dehydrogenases or reductases. However, a distinct subclass of MDRs involved in polycyclic tetramate macrolactam (PoTeM) biosynthesis catalyzes reductive cyclizations via hydride-mediated C-C bond formation. Here, we present the apo and substrate-bound structures of OX4 and CftD, two enzymes responsible for the third ring formation in PoTeMs biosynthesis. Structural and mutational analysis reveal a catalytic mechanism wherein OX4 initiates a NADPH-dependent 1,6-reduction, followed by cyclization to form the C11-C22 bond, water-mediated protonation of the C7-carbonyl oxygen, and a final tautomerization to produce the cyclized product. Precise substrate positioning and stabilization of the enolate intermediate by the conserved residue W260 are critical for catalysis. These findings represent the first structural and mechanistic understanding of this newly identified cyclase subgroup and offer promising new avenues for enzyme engineering and natural product biosynthesis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"13 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c04971","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Few enzymes are known to catalyze reductive cyclizations via nucleophile-mediated C-C bond formation. Medium-chain dehydrogenases/reductases (MDRs) typically function as dehydrogenases or reductases. However, a distinct subclass of MDRs involved in polycyclic tetramate macrolactam (PoTeM) biosynthesis catalyzes reductive cyclizations via hydride-mediated C-C bond formation. Here, we present the apo and substrate-bound structures of OX4 and CftD, two enzymes responsible for the third ring formation in PoTeMs biosynthesis. Structural and mutational analysis reveal a catalytic mechanism wherein OX4 initiates a NADPH-dependent 1,6-reduction, followed by cyclization to form the C11-C22 bond, water-mediated protonation of the C7-carbonyl oxygen, and a final tautomerization to produce the cyclized product. Precise substrate positioning and stabilization of the enolate intermediate by the conserved residue W260 are critical for catalysis. These findings represent the first structural and mechanistic understanding of this newly identified cyclase subgroup and offer promising new avenues for enzyme engineering and natural product biosynthesis.
中链脱氢酶/还原酶催化多环四聚乳酸大内酰胺生物合成中还原环化的结构基础。
已知很少有酶通过亲核细胞介导的C-C键形成来催化还原性环化。中链脱氢酶/还原酶(mdr)通常起脱氢酶或还原酶的作用。然而,参与多环四聚内酰胺(PoTeM)生物合成的一个独特的mdr亚类通过氢化物介导的C-C键形成催化还原性环化。在这里,我们展示了OX4和CftD的载脂蛋白和底物结合结构,这两种酶在PoTeMs生物合成中负责第三环的形成。结构和突变分析揭示了一个催化机制,其中OX4启动nadph依赖的1,6还原,随后环化形成C11-C22键,水介导的c7 -羰基氧的质子化,最终变异构产生环化产物。精确的底物定位和保守残基W260对烯醇酯中间体的稳定是催化的关键。这些发现代表了对这个新发现的环化酶亚群的结构和机制的首次理解,并为酶工程和天然产物生物合成提供了有希望的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信