Operando Heating and Cooling Electrochemical 4D-STEM Probing Nanoscale Dynamics at Solid–Liquid Interfaces

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sungin Kim, Valentin Briega-Martos, Shikai Liu, Kwanghwi Je, Chuqiao Shi, Katherine Marusak Stephens, Steven E. Zeltmann, Zhijing Zhang, Rafael Guzman-Soriano, Wenqi Li, Jiahong Jiang, Juhyung Choi, Yafet J. Negash, Franklin S. Walden II, Nelson L. Marthe Jr., Patrick S. Wellborn, Yaofeng Guo, John Damiano, Yimo Han, Erik H. Thiede and Yao Yang*, 
{"title":"Operando Heating and Cooling Electrochemical 4D-STEM Probing Nanoscale Dynamics at Solid–Liquid Interfaces","authors":"Sungin Kim,&nbsp;Valentin Briega-Martos,&nbsp;Shikai Liu,&nbsp;Kwanghwi Je,&nbsp;Chuqiao Shi,&nbsp;Katherine Marusak Stephens,&nbsp;Steven E. Zeltmann,&nbsp;Zhijing Zhang,&nbsp;Rafael Guzman-Soriano,&nbsp;Wenqi Li,&nbsp;Jiahong Jiang,&nbsp;Juhyung Choi,&nbsp;Yafet J. Negash,&nbsp;Franklin S. Walden II,&nbsp;Nelson L. Marthe Jr.,&nbsp;Patrick S. Wellborn,&nbsp;Yaofeng Guo,&nbsp;John Damiano,&nbsp;Yimo Han,&nbsp;Erik H. Thiede and Yao Yang*,&nbsp;","doi":"10.1021/jacs.5c05005","DOIUrl":null,"url":null,"abstract":"<p ><i>Operando</i>/<i>in situ</i> methods have revolutionized our fundamental understanding of molecular and structural changes at solid–liquid interfaces and enabled the vision of “watching chemistry in action”. <i>Operando</i> transmission electron microscopy (TEM) emerges as a powerful tool to interrogate time-resolved nanoscale dynamics, which involve local electrical fields and charge transfer kinetics distinctly different from those of their bulk counterparts. Despite early reports on electrochemical or heating liquid-cell TEM, developing <i>operando</i> TEM with simultaneous electrochemical and thermal control remains a formidable challenge. Here, we developed <i>operando</i> heating and cooling electrochemical liquid-cell scanning TEM (EC-STEM). By integrating a three-electrode electrochemical circuit and an additional two-electrode thermal circuit, we can investigate heterogeneous electrochemical kinetics across a wide temperature range of −50 to 300 °C. We used Cu electrodeposition/stripping processes as a model system to demonstrate quantitative electrochemistry from −40 to 95 °C in both transient and steady states in aqueous and organic solutions, which paves the way for investigating energy materials operating in extreme climates. Machine learning-assisted quantitative 4D-STEM structural analysis in cold liquids (−40 °C) reveals a distinct two-stage growth of nanometer-scale mossy Cu nanoislands with random orientations followed by μm-scale Cu dendrites with preferential orientations. This work benchmarked electrochemistry in the three-electrode EC-STEM and systematically investigated the temperature and pH dependence of the Pt pseudoreference electrode (RE). At room temperature, the Pt pseudo-RE shows a reliable potential of 0.8 ± 0.1 V vs the standard hydrogen electrode and remains pH-independent on the reversible hydrogen electrode scale. We anticipate that <i>operando</i> heating/cooling EC-STEM will become invaluable for understanding fundamental temperature-controlled nanoscale electrochemistry and advancing renewable energy technologies (e.g., catalysts and batteries) in realistic climates.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 27","pages":"23654–23671"},"PeriodicalIF":15.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c05005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Operando/in situ methods have revolutionized our fundamental understanding of molecular and structural changes at solid–liquid interfaces and enabled the vision of “watching chemistry in action”. Operando transmission electron microscopy (TEM) emerges as a powerful tool to interrogate time-resolved nanoscale dynamics, which involve local electrical fields and charge transfer kinetics distinctly different from those of their bulk counterparts. Despite early reports on electrochemical or heating liquid-cell TEM, developing operando TEM with simultaneous electrochemical and thermal control remains a formidable challenge. Here, we developed operando heating and cooling electrochemical liquid-cell scanning TEM (EC-STEM). By integrating a three-electrode electrochemical circuit and an additional two-electrode thermal circuit, we can investigate heterogeneous electrochemical kinetics across a wide temperature range of −50 to 300 °C. We used Cu electrodeposition/stripping processes as a model system to demonstrate quantitative electrochemistry from −40 to 95 °C in both transient and steady states in aqueous and organic solutions, which paves the way for investigating energy materials operating in extreme climates. Machine learning-assisted quantitative 4D-STEM structural analysis in cold liquids (−40 °C) reveals a distinct two-stage growth of nanometer-scale mossy Cu nanoislands with random orientations followed by μm-scale Cu dendrites with preferential orientations. This work benchmarked electrochemistry in the three-electrode EC-STEM and systematically investigated the temperature and pH dependence of the Pt pseudoreference electrode (RE). At room temperature, the Pt pseudo-RE shows a reliable potential of 0.8 ± 0.1 V vs the standard hydrogen electrode and remains pH-independent on the reversible hydrogen electrode scale. We anticipate that operando heating/cooling EC-STEM will become invaluable for understanding fundamental temperature-controlled nanoscale electrochemistry and advancing renewable energy technologies (e.g., catalysts and batteries) in realistic climates.

Abstract Image

操作加热和冷却电化学4D-STEM探测固液界面纳米尺度动力学。
Operando/in situ方法彻底改变了我们对固液界面分子和结构变化的基本理解,并实现了“观察化学作用”的愿景。透射电子显微镜(TEM)是研究时间分辨纳米尺度动力学的有力工具,其涉及的局部电场和电荷转移动力学明显不同于它们的体同行。尽管早期有电化学或加热液电池瞬变电磁法的报道,但开发同时具有电化学和热控制的operando瞬变电磁法仍然是一个巨大的挑战。在这里,我们开发了操作加热和冷却电化学液池扫描透射电镜(EC-STEM)。通过集成三电极电化学电路和附加的两电极热电路,我们可以在-50至300°C的宽温度范围内研究非均相电化学动力学。我们使用Cu电沉积/剥离过程作为模型系统,演示了在水和有机溶液中从-40°C到95°C的瞬态和稳态下的定量电化学,这为研究在极端气候下运行的能源材料铺平了道路。在低温液体(-40°C)中,机器学习辅助的定量4D-STEM结构分析显示,具有随机取向的纳米级苔藓状Cu纳米岛和具有优先取向的μm级Cu枝晶的生长有明显的两个阶段。本研究以三电极EC-STEM电化学为基准,系统地研究了Pt伪参比电极(RE)的温度和pH依赖性。在室温下,Pt伪re相对于标准氢电极显示出0.8±0.1 V的可靠电位,并且在可逆氢电极尺度上保持ph无关。我们预计,在现实气候条件下,操作式加热/冷却EC-STEM对于理解基本的温度控制纳米电化学和推进可再生能源技术(例如催化剂和电池)将变得非常宝贵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信