Artificial intelligence in automated detection of lung nodules: a narrative review.

Amirreza Khalaji, Farshad Riahi, Diana Rafieezadeh, Fahimeh Khademi, Shahin Fesharaki, Saeid Sadeghi Joni
{"title":"Artificial intelligence in automated detection of lung nodules: a narrative review.","authors":"Amirreza Khalaji, Farshad Riahi, Diana Rafieezadeh, Fahimeh Khademi, Shahin Fesharaki, Saeid Sadeghi Joni","doi":"10.62347/YHID9574","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains a leading cause of cancer-related mortality worldwide, and early detection is essential for improving patient outcomes. This study evaluates the role of artificial intelligence (AI) in lung nodule detection, focusing on its potential to enhance the accuracy of early lung cancer diagnosis. We assess the performance of AI tools, particularly convolutional neural networks (CNNs), in identifying and segmenting lung nodules from computed tomography (CT) and X-ray images. Our findings indicate that AI systems achieve a sensitivity of 70-90%, comparable to that of experienced radiologists, while reducing false-positive rates. In pulmonary nodule detection on CT scans, AI demonstrated over 95% sensitivity with fewer than one false-positive per scan. The implementation of AI as a \"second reader\" significantly improved detection accuracy. Despite these advancements, challenges remain, including high false-positive rates, issues with generalizability across diverse populations, regulatory concerns, and skepticism among healthcare professionals. This study highlights the promise of AI in supporting radiologists and improving lung cancer screening while emphasizing the need for further research to enhance specificity and address existing limitations.</p>","PeriodicalId":94056,"journal":{"name":"International journal of physiology, pathophysiology and pharmacology","volume":"17 2","pages":"45-51"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of physiology, pathophysiology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/YHID9574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer remains a leading cause of cancer-related mortality worldwide, and early detection is essential for improving patient outcomes. This study evaluates the role of artificial intelligence (AI) in lung nodule detection, focusing on its potential to enhance the accuracy of early lung cancer diagnosis. We assess the performance of AI tools, particularly convolutional neural networks (CNNs), in identifying and segmenting lung nodules from computed tomography (CT) and X-ray images. Our findings indicate that AI systems achieve a sensitivity of 70-90%, comparable to that of experienced radiologists, while reducing false-positive rates. In pulmonary nodule detection on CT scans, AI demonstrated over 95% sensitivity with fewer than one false-positive per scan. The implementation of AI as a "second reader" significantly improved detection accuracy. Despite these advancements, challenges remain, including high false-positive rates, issues with generalizability across diverse populations, regulatory concerns, and skepticism among healthcare professionals. This study highlights the promise of AI in supporting radiologists and improving lung cancer screening while emphasizing the need for further research to enhance specificity and address existing limitations.

人工智能在肺结节自动检测中的应用综述。
肺癌仍然是世界范围内癌症相关死亡的主要原因,早期发现对于改善患者预后至关重要。本研究评估了人工智能(AI)在肺结节检测中的作用,重点关注其在提高早期肺癌诊断准确性方面的潜力。我们评估了人工智能工具,特别是卷积神经网络(cnn)在从计算机断层扫描(CT)和x射线图像中识别和分割肺结节方面的性能。我们的研究结果表明,人工智能系统的灵敏度达到70-90%,与经验丰富的放射科医生相当,同时降低了假阳性率。在CT扫描的肺结节检测中,人工智能显示出超过95%的灵敏度,每次扫描的假阳性少于一次。人工智能作为“第二阅读器”的实施显著提高了检测精度。尽管取得了这些进步,但挑战仍然存在,包括高假阳性率、不同人群的普遍性问题、监管问题以及医疗保健专业人员的怀疑。这项研究强调了人工智能在支持放射科医生和改善肺癌筛查方面的前景,同时强调了进一步研究以增强特异性和解决现有局限性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信