Molecular diagnostic methods for rapid diagnosis of central nervous system infections.

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Frontiers in medical technology Pub Date : 2025-04-22 eCollection Date: 2025-01-01 DOI:10.3389/fmedt.2025.1497512
Mallikarjuna Pedduru Venkatareddy, Dinesh Upadhya, Prakash Peralam Yegneswaran, Aneena Varghese, Suryadipali Pahadasingh, Arvind N Prabhu, Kavitha Saravu, Kavitha S Shettigar
{"title":"Molecular diagnostic methods for rapid diagnosis of central nervous system infections.","authors":"Mallikarjuna Pedduru Venkatareddy, Dinesh Upadhya, Prakash Peralam Yegneswaran, Aneena Varghese, Suryadipali Pahadasingh, Arvind N Prabhu, Kavitha Saravu, Kavitha S Shettigar","doi":"10.3389/fmedt.2025.1497512","DOIUrl":null,"url":null,"abstract":"<p><p>Central nervous system infections (CNSI) are serious life-threatening conditions caused by bacteria, viruses, fungi, and parasites and lead to high morbidity and mortality worldwide. Therefore, rapid identification of causative organisms and appropriate treatment are important. The traditional identification methods are time-consuming and lack sensitivity and specificity. Although culture method is gold standard for CNSI, it is time-consuming and microbiology reporting requires several days. Multiplex PCR assays can detect multiple pathogens simultaneously in clinical samples and overcome the limitations of conventional identification techniques. Despite the availability of several commercial molecular-based platforms for the detection of pathogens causing CNSI, there are still limitations in terms of cost, false positive results, and false negative results, which are limited to targeted pathogens in the panel. Moreover, validation of many commercially available and in-house laboratory-developed molecular assays is still lacking. In addition, molecular diagnostic tests need to be used in correlation with the clinical context to ensure better diagnosis and management of infections.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"7 ","pages":"1497512"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2025.1497512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Central nervous system infections (CNSI) are serious life-threatening conditions caused by bacteria, viruses, fungi, and parasites and lead to high morbidity and mortality worldwide. Therefore, rapid identification of causative organisms and appropriate treatment are important. The traditional identification methods are time-consuming and lack sensitivity and specificity. Although culture method is gold standard for CNSI, it is time-consuming and microbiology reporting requires several days. Multiplex PCR assays can detect multiple pathogens simultaneously in clinical samples and overcome the limitations of conventional identification techniques. Despite the availability of several commercial molecular-based platforms for the detection of pathogens causing CNSI, there are still limitations in terms of cost, false positive results, and false negative results, which are limited to targeted pathogens in the panel. Moreover, validation of many commercially available and in-house laboratory-developed molecular assays is still lacking. In addition, molecular diagnostic tests need to be used in correlation with the clinical context to ensure better diagnosis and management of infections.

快速诊断中枢神经系统感染的分子诊断方法。
中枢神经系统感染(CNSI)是由细菌、病毒、真菌和寄生虫引起的严重危及生命的疾病,在世界范围内导致高发病率和死亡率。因此,快速识别致病生物和适当的治疗是重要的。传统的鉴定方法耗时长,缺乏敏感性和特异性。虽然培养法是CNSI的金标准,但它很耗时,微生物学报告需要几天时间。多重PCR检测可以同时检测临床样品中的多种病原体,克服了传统鉴定技术的局限性。尽管有几种基于商业分子的平台可用于检测导致CNSI的病原体,但在成本、假阳性结果和假阴性结果方面仍然存在局限性,仅限于面板中的目标病原体。此外,许多市售和内部实验室开发的分子分析方法的验证仍然缺乏。此外,需要结合临床情况使用分子诊断测试,以确保更好地诊断和管理感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信