{"title":"Prediction of Spontaneous Breathing Trial Outcome in Critically Ill-Ventilated Patients Using Deep Learning: Development and Verification Study.","authors":"Hui-Chiao Yang, Angelica Te-Hui Hao, Shih-Chia Liu, Yu-Cheng Chang, Yao-Te Tsai, Shao-Jen Weng, Ming-Cheng Chan, Chen-Yu Wang, Yeong-Yuh Xu","doi":"10.2196/64592","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-term ventilator-dependent patients often face problems such as decreased quality of life, increased mortality, and increased medical costs. Respiratory therapists must perform complex and time-consuming ventilator weaning assessments, which typically take 48-72 hours. Traditional disengagement methods rely on manual evaluation and are susceptible to subjectivity, human errors, and low efficiency.</p><p><strong>Objective: </strong>This study aims to develop an artificial intelligence-based prediction model to predict whether a patient can successfully pass a spontaneous breathing trial (SBT) using the patient's clinical data collected before SBT initiation. Instead of comparing different SBT strategies or analyzing their impact on extubation success, this study focused on establishing a data-driven approach under a fixed SBT strategy to provide an objective and efficient assessment tool. Through this model, we aim to enhance the accuracy and efficiency of ventilator weaning assessments, reduce unnecessary SBT attempts, optimize intensive care unit resource usage, and ultimately improve the quality of care for ventilator-dependent patients.</p><p><strong>Methods: </strong>This study used a retrospective cohort study and developed a novel deep learning architecture, hybrid CNN-MLP (convolutional neural network-multilayer perceptron), for analysis. Unlike the traditional CNN-MLP classification method, hybrid CNN-MLP performs feature learning and fusion by interleaving CNN and MLP layers so that data features can be extracted and integrated at different levels, thereby improving the flexibility and prediction accuracy of the model. The study participants were patients aged 20 years or older hospitalized in the intensive care unit of a medical center in central Taiwan between January 1, 2016, and December 31, 2022. A total of 3686 patients were included in the study, and 6536 pre-SBT clinical records were collected before each SBT of these patients, of which 3268 passed the SBT and 3268 failed.</p><p><strong>Results: </strong>The model performed well in predicting SBT outcomes. The training dataset's precision is 99.3% (2443/2460 records), recall is 93.5% (2443/2614 records), specificity is 99.3% (2597/2614 records), and F<sub>1</sub>-score is 0.963. In the test dataset, the model maintains accuracy with a precision of 89.2% (561/629 records), a recall of 85.8% (561/654 records), a specificity of 89.6% (586/654 records), and an F<sub>1</sub>-score of 0.875. These results confirm the reliability of the model and its potential for clinical application.</p><p><strong>Conclusions: </strong>This study successfully developed a deep learning-based SBT prediction model that can be used as an objective and efficient ventilator weaning assessment tool. The model's performance shows that it can be integrated into clinical workflow, improve the quality of patient care, and reduce ventilator dependence, which is an important step in improving the effectiveness of respiratory therapy.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64592"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Long-term ventilator-dependent patients often face problems such as decreased quality of life, increased mortality, and increased medical costs. Respiratory therapists must perform complex and time-consuming ventilator weaning assessments, which typically take 48-72 hours. Traditional disengagement methods rely on manual evaluation and are susceptible to subjectivity, human errors, and low efficiency.
Objective: This study aims to develop an artificial intelligence-based prediction model to predict whether a patient can successfully pass a spontaneous breathing trial (SBT) using the patient's clinical data collected before SBT initiation. Instead of comparing different SBT strategies or analyzing their impact on extubation success, this study focused on establishing a data-driven approach under a fixed SBT strategy to provide an objective and efficient assessment tool. Through this model, we aim to enhance the accuracy and efficiency of ventilator weaning assessments, reduce unnecessary SBT attempts, optimize intensive care unit resource usage, and ultimately improve the quality of care for ventilator-dependent patients.
Methods: This study used a retrospective cohort study and developed a novel deep learning architecture, hybrid CNN-MLP (convolutional neural network-multilayer perceptron), for analysis. Unlike the traditional CNN-MLP classification method, hybrid CNN-MLP performs feature learning and fusion by interleaving CNN and MLP layers so that data features can be extracted and integrated at different levels, thereby improving the flexibility and prediction accuracy of the model. The study participants were patients aged 20 years or older hospitalized in the intensive care unit of a medical center in central Taiwan between January 1, 2016, and December 31, 2022. A total of 3686 patients were included in the study, and 6536 pre-SBT clinical records were collected before each SBT of these patients, of which 3268 passed the SBT and 3268 failed.
Results: The model performed well in predicting SBT outcomes. The training dataset's precision is 99.3% (2443/2460 records), recall is 93.5% (2443/2614 records), specificity is 99.3% (2597/2614 records), and F1-score is 0.963. In the test dataset, the model maintains accuracy with a precision of 89.2% (561/629 records), a recall of 85.8% (561/654 records), a specificity of 89.6% (586/654 records), and an F1-score of 0.875. These results confirm the reliability of the model and its potential for clinical application.
Conclusions: This study successfully developed a deep learning-based SBT prediction model that can be used as an objective and efficient ventilator weaning assessment tool. The model's performance shows that it can be integrated into clinical workflow, improve the quality of patient care, and reduce ventilator dependence, which is an important step in improving the effectiveness of respiratory therapy.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.