Artificial intelligence approaches for anti-addiction drug discovery

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dong Chen, Jian Jiang, Nicole Hayes, Zhe Su and Guo-Wei Wei
{"title":"Artificial intelligence approaches for anti-addiction drug discovery","authors":"Dong Chen, Jian Jiang, Nicole Hayes, Zhe Su and Guo-Wei Wei","doi":"10.1039/D5DD00032G","DOIUrl":null,"url":null,"abstract":"<p >Drug addiction remains a complex global public health challenge, with traditional anti-addiction drug discovery hindered by limited efficacy and slow progress in targeting intricate neurochemical systems. Advanced algorithms within artificial intelligence (AI) present a transformative solution that boosts both speed and precision in therapeutic development. This review examines how artificial intelligence serves as a crucial element in developing anti-addiction medications by targeting the opioid system along with dopaminergic and GABAergic systems, which are essential in addiction pathology. It identifies upcoming trends promising in studying less-researched addiction-linked systems through innovative general-purpose drug discovery techniques. AI holds the potential to transform anti-addiction research by breaking down conventional limitations, which will enable the development of superior treatment methods.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1404-1416"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00032g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug addiction remains a complex global public health challenge, with traditional anti-addiction drug discovery hindered by limited efficacy and slow progress in targeting intricate neurochemical systems. Advanced algorithms within artificial intelligence (AI) present a transformative solution that boosts both speed and precision in therapeutic development. This review examines how artificial intelligence serves as a crucial element in developing anti-addiction medications by targeting the opioid system along with dopaminergic and GABAergic systems, which are essential in addiction pathology. It identifies upcoming trends promising in studying less-researched addiction-linked systems through innovative general-purpose drug discovery techniques. AI holds the potential to transform anti-addiction research by breaking down conventional limitations, which will enable the development of superior treatment methods.

Abstract Image

抗成瘾药物发现的人工智能方法。
药物成瘾仍然是一个复杂的全球公共卫生挑战,传统的抗成瘾药物的发现受到疗效有限和针对复杂神经化学系统进展缓慢的阻碍。人工智能(AI)中的先进算法提供了一种变革性的解决方案,可以提高治疗开发的速度和精度。这篇综述探讨了人工智能如何通过靶向阿片系统以及多巴胺和gaba能系统来开发抗成瘾药物的关键因素,这些系统在成瘾病理中是必不可少的。它通过创新的通用药物发现技术,确定了在研究较少研究的成瘾相关系统方面即将出现的趋势。人工智能有可能打破传统的限制,改变反成瘾研究,从而开发出更好的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信