Jesus Campagna, Barbara Jagodzinska, Dongwook Wi, Chunni Zhu, Jessica Lee, Whitaker Cohn, Michael Jun, Chris Elias, Samar Padder, Olivier Descamps, Clare Peters-Libeu, Qiang Zhang, Olivia Gorostiza, Karen Poksay, Patricia Spilman, Dale Bredesen, Varghese John
{"title":"Discovery of an APP-selective BACE1 inhibitor for Alzheimer's disease.","authors":"Jesus Campagna, Barbara Jagodzinska, Dongwook Wi, Chunni Zhu, Jessica Lee, Whitaker Cohn, Michael Jun, Chris Elias, Samar Padder, Olivier Descamps, Clare Peters-Libeu, Qiang Zhang, Olivia Gorostiza, Karen Poksay, Patricia Spilman, Dale Bredesen, Varghese John","doi":"10.1016/j.neurot.2025.e00610","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of amyloid precursor protein (APP) beta-site cleaving enzyme 1 (BACE1) has been a target for Alzheimer's disease (AD) therapeutic development. Here, we report our identification of APP-selective BACE1 (ASBI) inhibitors that are selective for APP as the substrate and BACE1 as the target enzyme. A known fluoro aminohydantoin (FAH) inhibitor compound was identified by screening a compound library for inhibition of BACE1 cleavage of a maltose binding protein (MBP)-conjugated-APPC125 substrate followed by optimization and IC50 determination using the P5-P5' activity assay. Optimization of the screening hit led to candidate FAH65, which displays selectivity for inhibition of APP cleavage with little activity against other BACE1 substrates neuregulin 1 (NRG1) or p-selectin glycoprotein ligand-1 (PSGL1). FAH65 shows little inhibitory activity against other aspartyl proteases cathepsin D (Cat D) and BACE2. FAH65 reduces BACE1 cleavage products soluble APPβ (sAPPβ) and the β C-terminal fragment (βCTF), as well as amyloid-β (Aβ) 1-40 and 1-42, both in vitro in cells and in vivo in an animal model of AD. In a murine model of AD, FAH65 improved the discrimination score in the Novel Object Recognition (NOR) memory testing paradigm. The active enantiomer of racemate FAH65, FAH65E(-), displays good brain-penetrance and target engagement, meriting further pre-clinical development as an ASBI that may reduce Aβ levels and overcome the deleterious effects of the non-selective BACE1 inhibitors that have failed in the clinic. FAH65E(-) has the potential to be a first-in-class oral therapy that could be used in conjunction with an approved anti-Aβ antibody therapy for AD.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00610"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00610","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of amyloid precursor protein (APP) beta-site cleaving enzyme 1 (BACE1) has been a target for Alzheimer's disease (AD) therapeutic development. Here, we report our identification of APP-selective BACE1 (ASBI) inhibitors that are selective for APP as the substrate and BACE1 as the target enzyme. A known fluoro aminohydantoin (FAH) inhibitor compound was identified by screening a compound library for inhibition of BACE1 cleavage of a maltose binding protein (MBP)-conjugated-APPC125 substrate followed by optimization and IC50 determination using the P5-P5' activity assay. Optimization of the screening hit led to candidate FAH65, which displays selectivity for inhibition of APP cleavage with little activity against other BACE1 substrates neuregulin 1 (NRG1) or p-selectin glycoprotein ligand-1 (PSGL1). FAH65 shows little inhibitory activity against other aspartyl proteases cathepsin D (Cat D) and BACE2. FAH65 reduces BACE1 cleavage products soluble APPβ (sAPPβ) and the β C-terminal fragment (βCTF), as well as amyloid-β (Aβ) 1-40 and 1-42, both in vitro in cells and in vivo in an animal model of AD. In a murine model of AD, FAH65 improved the discrimination score in the Novel Object Recognition (NOR) memory testing paradigm. The active enantiomer of racemate FAH65, FAH65E(-), displays good brain-penetrance and target engagement, meriting further pre-clinical development as an ASBI that may reduce Aβ levels and overcome the deleterious effects of the non-selective BACE1 inhibitors that have failed in the clinic. FAH65E(-) has the potential to be a first-in-class oral therapy that could be used in conjunction with an approved anti-Aβ antibody therapy for AD.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.