Ying Feng, Zheng Wu, Kefan Hu, Shenzhen Yuan, Jun Li, Yi Wang, Zhongyi Wang, Han Yang, Zhi-Hui Luo, Jingjiao Zhou
{"title":"Inflammatory metabolite 7α,25-OHC promotes TIMP1 expression in COVID-19 monocytes through synergy effect of SMARCC1/JUND/H3K27ac.","authors":"Ying Feng, Zheng Wu, Kefan Hu, Shenzhen Yuan, Jun Li, Yi Wang, Zhongyi Wang, Han Yang, Zhi-Hui Luo, Jingjiao Zhou","doi":"10.1007/s00018-025-05721-w","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin remodeling factors are involved in the inflammatory responses, contributing to tissue damage and multi-organ dysfunction in COVID-19 patients. However, the underlying mechanisms remain unclear. In this study, high-dimensional analyses of single-cell RNA sequencing and single-cell ATAC sequencing data revealed increased chromatin accessibility at the promoters or enhancers of the pro-inflammatory cytokine tissue inhibitor of metalloproteinase-1 (TIMP1), as well as altered gene transcription profiles in monocytes from COVID-19 patients. Motif enrichment and positive regulators analyses identified SMARCC1, the core subunit of the chromatin remodeling complex, and the transcription factor JUND as positive regulators to co-modulate TIMP1 expression. In-vitro experiments, co-immunoprecipitation and chromatin immunoprecipitation (ChIP)-qPCR, and others, demonstrated the collaboration of SMARCC1 and JUND. Increased 7α,25-dihydroxycholesterol (7α,25-OHC) enhanced SMARCC1-JUND interactions to co-regulate TIMP1 expression. Further investigation indicated that 7α,25-OHC promoted the expression of SMARCC1 and its co-localization with H3K27ac, which involved in the expression of TIMP1 and inflammatory responses. Our study highlights the critical roles of SMARCC1 and JUND in COVID-19 inflammation, and offers the potential targets for the prevention and treatment of COVID-19.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"208"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05721-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromatin remodeling factors are involved in the inflammatory responses, contributing to tissue damage and multi-organ dysfunction in COVID-19 patients. However, the underlying mechanisms remain unclear. In this study, high-dimensional analyses of single-cell RNA sequencing and single-cell ATAC sequencing data revealed increased chromatin accessibility at the promoters or enhancers of the pro-inflammatory cytokine tissue inhibitor of metalloproteinase-1 (TIMP1), as well as altered gene transcription profiles in monocytes from COVID-19 patients. Motif enrichment and positive regulators analyses identified SMARCC1, the core subunit of the chromatin remodeling complex, and the transcription factor JUND as positive regulators to co-modulate TIMP1 expression. In-vitro experiments, co-immunoprecipitation and chromatin immunoprecipitation (ChIP)-qPCR, and others, demonstrated the collaboration of SMARCC1 and JUND. Increased 7α,25-dihydroxycholesterol (7α,25-OHC) enhanced SMARCC1-JUND interactions to co-regulate TIMP1 expression. Further investigation indicated that 7α,25-OHC promoted the expression of SMARCC1 and its co-localization with H3K27ac, which involved in the expression of TIMP1 and inflammatory responses. Our study highlights the critical roles of SMARCC1 and JUND in COVID-19 inflammation, and offers the potential targets for the prevention and treatment of COVID-19.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered