Intermittent spike train processing through fractional leaky integrate-and-fire neuromorphic unit.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0251233
R T Sibatov, A K Gavrilova, A I Savitskiy, Yu P Shaman, A V Sysa
{"title":"Intermittent spike train processing through fractional leaky integrate-and-fire neuromorphic unit.","authors":"R T Sibatov, A K Gavrilova, A I Savitskiy, Yu P Shaman, A V Sysa","doi":"10.1063/5.0251233","DOIUrl":null,"url":null,"abstract":"<p><p>The leaky integrate-and-fire (LIF) model provides a fundamental framework for modeling neuronal dynamics in spiking networks. While generalized LIF models can incorporate features, such as spike-frequency adaptation and noise, our study specifically examines its fractional-order extension governed by a relaxation equation with a fractional derivative, whose power-law dynamics emulate long-term memory effects ideal for processing intermittent, scale-invariant signals. Statistical properties of the response of the fractional-order LIF model to a flickering input voltage pulse flow, characterized by a fractional Poisson process of order ν, are evaluated. To implement the fractional LIF model in hardware, we developed a microscale transistor using a network of single-walled carbon nanotubes with an electrolyte gate. The system exhibits fractional-order dynamics, making it well-suited for neuromorphic spiking networks that process scale-invariant signals with long-range temporal correlations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251233","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The leaky integrate-and-fire (LIF) model provides a fundamental framework for modeling neuronal dynamics in spiking networks. While generalized LIF models can incorporate features, such as spike-frequency adaptation and noise, our study specifically examines its fractional-order extension governed by a relaxation equation with a fractional derivative, whose power-law dynamics emulate long-term memory effects ideal for processing intermittent, scale-invariant signals. Statistical properties of the response of the fractional-order LIF model to a flickering input voltage pulse flow, characterized by a fractional Poisson process of order ν, are evaluated. To implement the fractional LIF model in hardware, we developed a microscale transistor using a network of single-walled carbon nanotubes with an electrolyte gate. The system exhibits fractional-order dynamics, making it well-suited for neuromorphic spiking networks that process scale-invariant signals with long-range temporal correlations.

断断续续的尖峰序列处理通过分数泄漏整合-火神经形态单元。
漏失集成点火(LIF)模型为神经元动态建模提供了一个基本框架。虽然广义LIF模型可以包含特征,如尖峰频率适应和噪声,但我们的研究特别研究了它的分数阶扩展,该扩展由带有分数阶导数的松弛方程控制,其幂律动态模拟长期记忆效应,非常适合处理间歇性,尺度不变的信号。研究了分数阶LIF模型对输入电压脉冲流(ν阶分数泊松过程)响应的统计性质。为了在硬件中实现分数LIF模型,我们开发了一种使用带有电解质栅极的单壁碳纳米管网络的微尺度晶体管。该系统表现出分数阶动态,使其非常适合处理具有长时间相关性的尺度不变信号的神经形态尖峰网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信