Dose-dependent CHCHD10 dysregulation dictates motor neuron disease severity and alters creatine metabolism.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Sandra Harjuhaahto, Manu Jokela, Jayasimman Rajendran, Minea Rokka, Bowen Hu, Jouni Kvist, Fuping Zhang, Tomáš Zárybnický, Kimmo Haimilahti, Liliya Euro, Eija Pirinen, Nadine Huber, Sanna-Kaisa Herukka, Annakaisa Haapasalo, Emilia Kuuluvainen, Swetha Gopalakrishnan, Pekka Katajisto, Ville Hietakangas, Thibaut Burg, Ludo Van Den Bosch, Xiaoping Huang, Derek P Narendra, Satu Kuure, Emil Ylikallio, Henna Tyynismaa
{"title":"Dose-dependent CHCHD10 dysregulation dictates motor neuron disease severity and alters creatine metabolism.","authors":"Sandra Harjuhaahto, Manu Jokela, Jayasimman Rajendran, Minea Rokka, Bowen Hu, Jouni Kvist, Fuping Zhang, Tomáš Zárybnický, Kimmo Haimilahti, Liliya Euro, Eija Pirinen, Nadine Huber, Sanna-Kaisa Herukka, Annakaisa Haapasalo, Emilia Kuuluvainen, Swetha Gopalakrishnan, Pekka Katajisto, Ville Hietakangas, Thibaut Burg, Ludo Van Den Bosch, Xiaoping Huang, Derek P Narendra, Satu Kuure, Emil Ylikallio, Henna Tyynismaa","doi":"10.1186/s40478-025-02039-3","DOIUrl":null,"url":null,"abstract":"<p><p>Dominant defects in CHCHD10, a mitochondrial intermembrane space protein, lead to a range of neurological and muscle disease phenotypes including amyotrophic lateral sclerosis. Many patients present with spinal muscular atrophy Jokela type (SMAJ), which is caused by heterozygous p.G66V variant. While most disease variants lead to aggregation of CHCHD10 and activation of proteotoxic stress responses, the pathogenic mechanisms of the p.G66V variant are less clear. Here we report the first homozygous CHCHD10 patient, and show that the variant dosage dictates the severity of the motor neuron disease in SMAJ. We demonstrate that the amount of the mutant CHCHD10 is reduced, but the disease mechanism of p.G66V is not full haploinsufficiency as residual mutant CHCHD10 protein is present even in a homozygous state. Novel knock-in mouse model recapitulates the dose-dependent reduction of mutant CHCHD10 protein and the slow disease progression of SMAJ. With metabolome analysis of patients' primary fibroblasts and patient-specific motor neurons, we show that CHCHD10 p.G66V dysregulates energy metabolism, leading to altered redox balance and energy buffering by creatine metabolism.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"111"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02039-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dominant defects in CHCHD10, a mitochondrial intermembrane space protein, lead to a range of neurological and muscle disease phenotypes including amyotrophic lateral sclerosis. Many patients present with spinal muscular atrophy Jokela type (SMAJ), which is caused by heterozygous p.G66V variant. While most disease variants lead to aggregation of CHCHD10 and activation of proteotoxic stress responses, the pathogenic mechanisms of the p.G66V variant are less clear. Here we report the first homozygous CHCHD10 patient, and show that the variant dosage dictates the severity of the motor neuron disease in SMAJ. We demonstrate that the amount of the mutant CHCHD10 is reduced, but the disease mechanism of p.G66V is not full haploinsufficiency as residual mutant CHCHD10 protein is present even in a homozygous state. Novel knock-in mouse model recapitulates the dose-dependent reduction of mutant CHCHD10 protein and the slow disease progression of SMAJ. With metabolome analysis of patients' primary fibroblasts and patient-specific motor neurons, we show that CHCHD10 p.G66V dysregulates energy metabolism, leading to altered redox balance and energy buffering by creatine metabolism.

剂量依赖性CHCHD10失调决定运动神经元疾病的严重程度并改变肌酸代谢。
线粒体膜间隙蛋白CHCHD10的显性缺陷导致一系列神经和肌肉疾病表型,包括肌萎缩性侧索硬化症。许多患者存在Jokela型脊髓性肌萎缩(SMAJ),这是由p.G66V杂合变异引起的。虽然大多数疾病变异导致CHCHD10聚集和蛋白毒性应激反应的激活,但p.G66V变异的致病机制尚不清楚。在这里,我们报告了第一个纯合子CHCHD10患者,并表明变异剂量决定了SMAJ运动神经元疾病的严重程度。我们证明突变体CHCHD10的数量减少,但p.G66V的发病机制不是完全单倍不足,因为即使在纯合子状态下也存在残留的突变体CHCHD10蛋白。新的敲入小鼠模型概括了突变CHCHD10蛋白的剂量依赖性减少和SMAJ的缓慢疾病进展。通过对患者原代成纤维细胞和患者特异性运动神经元的代谢组分析,我们发现CHCHD10 p.G66V失调能量代谢,导致氧化还原平衡和肌酸代谢的能量缓冲改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信