A comprehensive spatiotemporal map of dystrophin isoform expression in the developing and adult human brain.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Francesco Catapano, Reem Alkharji, Darren Chambers, Simran Singh, Artadokht Aghaeipour, Jyoti Malhotra, Patrizia Ferretti, Rahul Phadke, Francesco Muntoni
{"title":"A comprehensive spatiotemporal map of dystrophin isoform expression in the developing and adult human brain.","authors":"Francesco Catapano, Reem Alkharji, Darren Chambers, Simran Singh, Artadokht Aghaeipour, Jyoti Malhotra, Patrizia Ferretti, Rahul Phadke, Francesco Muntoni","doi":"10.1186/s40478-025-01996-z","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the dystrophin gene (DMD) cause the severe muscle-wasting disease Duchenne muscular dystrophy (DMD). Additionally, there is a high incidence of intellectual disability and neurobehavioural comorbidities in individuals with DMD. Similar behavioural abnormalities are found in mdx dystrophic mouse models. Unlike muscle, several dystrophin isoforms are expressed in the human brain, but a detailed map of regional and cellular localisation of dystrophin isoforms is missing. This is crucial in understanding the neuropathology of DMD individuals, and for evaluating the translatability of pre-clinical findings in DMD mouse models receiving genetic therapy interventions. Here, we provide a comprehensive dystrophin expression profile in human brains from early development to adulthood. We reveal expression of dp427p2, dp427c, dp427m and dp40 isoforms in human embryonic brains, not previously reported. We also detected dp427p2 expression and developmental regulation in human brain across the lifespan. In addition we showed by in situ hybridisation that dp140 was greatly downregulated in adult brains. Importantly, our data also demonstrate expression of DMD transcripts in human motor neurons and co-expression of different dystrophin isoforms within single neurons in both developing and adult brains. Finally, we show localisation of DMD transcripts with GAD1+ GABAergic-associated transcripts in neurons including cerebellar Purkinje cells and interneurons, as well as in the majority of neocortical and hippocampal SLC17A7+ glutamatergic neurons, suggesting a role for dystrophin in signalling at the neuronal inhibitory and excitatory synapses.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"110"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01996-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations in the dystrophin gene (DMD) cause the severe muscle-wasting disease Duchenne muscular dystrophy (DMD). Additionally, there is a high incidence of intellectual disability and neurobehavioural comorbidities in individuals with DMD. Similar behavioural abnormalities are found in mdx dystrophic mouse models. Unlike muscle, several dystrophin isoforms are expressed in the human brain, but a detailed map of regional and cellular localisation of dystrophin isoforms is missing. This is crucial in understanding the neuropathology of DMD individuals, and for evaluating the translatability of pre-clinical findings in DMD mouse models receiving genetic therapy interventions. Here, we provide a comprehensive dystrophin expression profile in human brains from early development to adulthood. We reveal expression of dp427p2, dp427c, dp427m and dp40 isoforms in human embryonic brains, not previously reported. We also detected dp427p2 expression and developmental regulation in human brain across the lifespan. In addition we showed by in situ hybridisation that dp140 was greatly downregulated in adult brains. Importantly, our data also demonstrate expression of DMD transcripts in human motor neurons and co-expression of different dystrophin isoforms within single neurons in both developing and adult brains. Finally, we show localisation of DMD transcripts with GAD1+ GABAergic-associated transcripts in neurons including cerebellar Purkinje cells and interneurons, as well as in the majority of neocortical and hippocampal SLC17A7+ glutamatergic neurons, suggesting a role for dystrophin in signalling at the neuronal inhibitory and excitatory synapses.

发育和成人大脑中肌营养不良蛋白异构体表达的综合时空图。
肌营养不良蛋白基因(DMD)突变导致严重的肌肉萎缩疾病杜氏肌营养不良症(DMD)。此外,DMD患者智力残疾和神经行为合并症的发生率很高。在mdx营养不良小鼠模型中也发现了类似的行为异常。与肌肉不同,人类大脑中表达了几种肌营养不良蛋白同种异构体,但缺乏肌营养不良蛋白同种异构体的区域和细胞定位的详细地图。这对于理解DMD个体的神经病理学,以及评估接受基因治疗干预的DMD小鼠模型的临床前研究结果的可翻译性至关重要。在这里,我们提供了从早期发育到成年的人类大脑中肌营养不良蛋白的全面表达谱。我们揭示了dp427p2, dp427c, dp427m和dp40亚型在人类胚胎大脑中的表达,这在以前没有报道过。我们还检测了dp427p2在人类大脑中的表达和发育调控。此外,我们通过原位杂交发现dp140在成人大脑中显著下调。重要的是,我们的数据还证明了DMD转录本在人类运动神经元中的表达,以及发育和成人大脑中单个神经元中不同抗肌营养不良蛋白同种异构体的共表达。最后,我们发现DMD转录本与GAD1+ gabaergic相关转录本在神经元中定位,包括小脑浦肯野细胞和中间神经元,以及大多数新皮层和海马SLC17A7+谷氨酸能神经元,这表明肌营养不良蛋白在神经元抑制性和兴奋性突触的信号传导中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信