Heteropore Conjugated Organic Reticular Subnano-Crystal for Photocatalytic Water Splitting

Ruijuan Zhang, Boying Zhang, Jiaqi Lv, Yue Wang, Haining Liu, Linda Jewell, Xinying Liu, Shanlin Qiao
{"title":"Heteropore Conjugated Organic Reticular Subnano-Crystal for Photocatalytic Water Splitting","authors":"Ruijuan Zhang,&nbsp;Boying Zhang,&nbsp;Jiaqi Lv,&nbsp;Yue Wang,&nbsp;Haining Liu,&nbsp;Linda Jewell,&nbsp;Xinying Liu,&nbsp;Shanlin Qiao","doi":"10.1002/cnl2.70016","DOIUrl":null,"url":null,"abstract":"<p>2D COF-based photocatalysts exist as insoluble and difficult-to-process blocks, the layered stacking buries active sites, hindering water molecule access, while crystal defects restrict charge carrier migration/penetration. The well-defined sub-nanostructures with distinct configurations (<i>C</i><sub>2</sub>, <i>C</i><sub>3</sub>) can construct multiple pathways and intramolecular electric fields, which promote electron separation and transfer. Hence, we develop a kind of heteropore-conjugated reticular oligomers (CROs) subnano-crystals with well-defined structures, which can be regarded as a defect-free COFs segment. These sub-nanometer dots ensure sufficient exposure of active sites, enhance processability, form a “homogeneous catalyst” and consequently increase the accessibility of water molecules. Accordingly, the photocatalytic performance of series CROs is up to 129.33 μmol h<sup>–1</sup>, improving 3–5 times over bulk COFs. Theoretical calculation shows that: Electron transfer number (ET) increased from 0.43 to 0.99 e, charge transfer distance (<i>D</i>) increases from 2.467 to 10.319 Å, while electron–hole overlap integral (<i>S</i><sub>r</sub>) decreases from 0.495 to 0.023, and exciton binding energy (<i>E</i><sub>b</sub>) decreases from 6.28 to 4.28 eV. The statistical product and service solutions (SPSS) method indicates that extending electron–hole separation distances and reducing exciton binding energy play a pivotal role in achieving effective electron delocalization and efficient charge transfer, thus significantly promoting the photocatalytic process.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

2D COF-based photocatalysts exist as insoluble and difficult-to-process blocks, the layered stacking buries active sites, hindering water molecule access, while crystal defects restrict charge carrier migration/penetration. The well-defined sub-nanostructures with distinct configurations (C2, C3) can construct multiple pathways and intramolecular electric fields, which promote electron separation and transfer. Hence, we develop a kind of heteropore-conjugated reticular oligomers (CROs) subnano-crystals with well-defined structures, which can be regarded as a defect-free COFs segment. These sub-nanometer dots ensure sufficient exposure of active sites, enhance processability, form a “homogeneous catalyst” and consequently increase the accessibility of water molecules. Accordingly, the photocatalytic performance of series CROs is up to 129.33 μmol h–1, improving 3–5 times over bulk COFs. Theoretical calculation shows that: Electron transfer number (ET) increased from 0.43 to 0.99 e, charge transfer distance (D) increases from 2.467 to 10.319 Å, while electron–hole overlap integral (Sr) decreases from 0.495 to 0.023, and exciton binding energy (Eb) decreases from 6.28 to 4.28 eV. The statistical product and service solutions (SPSS) method indicates that extending electron–hole separation distances and reducing exciton binding energy play a pivotal role in achieving effective electron delocalization and efficient charge transfer, thus significantly promoting the photocatalytic process.

用于光催化水分解的异孔共轭有机网状亚纳米晶体
基于cof的2D光催化剂以不溶性和难加工的块体形式存在,层状堆叠掩埋了活性位点,阻碍了水分子的进入,而晶体缺陷限制了载流子的迁移/渗透。具有不同构型的亚纳米结构(C2, C3)可以构建多种途径和分子内电场,促进电子的分离和转移。因此,我们开发了一种结构明确的异极共轭网状低聚物(CROs)亚纳米晶体,可视为无缺陷的COFs片段。这些亚纳米点确保了活性位点的充分暴露,提高了可加工性,形成了“均相催化剂”,从而增加了水分子的可及性。相应的,串联复合氧化物的光催化性能可达129.33 μmol h-1,比单体复合氧化物提高3-5倍。理论计算表明:电子转移数(ET)从0.43增加到0.99 e,电荷转移距离(D)从2.467增加到10.319 Å,电子-空穴重叠积分(Sr)从0.495降低到0.023,激子结合能(Eb)从6.28降低到4.28 eV。统计产品和服务解决方案(SPSS)方法表明,延长电子-空穴分离距离和降低激子结合能对于实现有效的电子离域和有效的电荷转移起着关键作用,从而显著促进光催化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信