Multiscale Catalyst Engineering for Stable, Selective, and Carbon-Neutral Industrial Hydrogen Peroxide Electrosynthesis

Mengxue Yang, Zhiyong Zhao, Tianyu Zhi, Shuai Yue, Jing Li, Tian Fu, Pengfei Wang, Sihui Zhan
{"title":"Multiscale Catalyst Engineering for Stable, Selective, and Carbon-Neutral Industrial Hydrogen Peroxide Electrosynthesis","authors":"Mengxue Yang,&nbsp;Zhiyong Zhao,&nbsp;Tianyu Zhi,&nbsp;Shuai Yue,&nbsp;Jing Li,&nbsp;Tian Fu,&nbsp;Pengfei Wang,&nbsp;Sihui Zhan","doi":"10.1002/cnl2.70017","DOIUrl":null,"url":null,"abstract":"<p>The electrocatalytic two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) has emerged as a pivotal strategy for sustainable hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesis, offering a carbon-neutral alternative to the energy-intensive anthraquinone process. This review critically synthesizes recent breakthroughs in catalyst design, mechanistic understanding, and system integration to address the persistent selectivity–stability trade-off. Key advances include atomic-level engineering of electronic modulation and surface functionalization and hydrophobicity control, which achieve &gt; 95% H<sub>2</sub>O<sub>2</sub> selectivity by precisely tuning *OOH adsorption energy and suppressing 4e<sup>−</sup> pathways. Hierarchical architectures, such as flow-through electrodes and catalytic membranes, extend operational stability beyond 500 h at industrial current densities (&gt; 200 mA cm<sup>−</sup><sup>2</sup>) through confinement effects and interfacial engineering. Emerging operando characterization techniques coupled with machine learning-accelerated simulations now enable dynamic mapping of active-site evolution and degradation mechanisms. System-level innovations integrating renewable energy input and circular carbon strategies demonstrate pilot-scale feasibility for net-negative emission H<sub>2</sub>O<sub>2</sub> production. However, persistent challenges in scalability, long-term catalyst durability under fluctuating loads, and techno-economic gaps between laboratory and industrial implementations require urgent attention. We propose a multidisciplinary roadmap combining materials genome initiatives, modular reactor design, and policy-driven lifecycle assessment frameworks to accelerate the deployment of 2e<sup>−</sup> ORR systems. This work provides actionable guidance for advancing carbon-neutral chemical manufacturing through electrochemical routes aligned with global net-zero goals.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic two-electron oxygen reduction reaction (2e ORR) has emerged as a pivotal strategy for sustainable hydrogen peroxide (H2O2) synthesis, offering a carbon-neutral alternative to the energy-intensive anthraquinone process. This review critically synthesizes recent breakthroughs in catalyst design, mechanistic understanding, and system integration to address the persistent selectivity–stability trade-off. Key advances include atomic-level engineering of electronic modulation and surface functionalization and hydrophobicity control, which achieve > 95% H2O2 selectivity by precisely tuning *OOH adsorption energy and suppressing 4e pathways. Hierarchical architectures, such as flow-through electrodes and catalytic membranes, extend operational stability beyond 500 h at industrial current densities (> 200 mA cm2) through confinement effects and interfacial engineering. Emerging operando characterization techniques coupled with machine learning-accelerated simulations now enable dynamic mapping of active-site evolution and degradation mechanisms. System-level innovations integrating renewable energy input and circular carbon strategies demonstrate pilot-scale feasibility for net-negative emission H2O2 production. However, persistent challenges in scalability, long-term catalyst durability under fluctuating loads, and techno-economic gaps between laboratory and industrial implementations require urgent attention. We propose a multidisciplinary roadmap combining materials genome initiatives, modular reactor design, and policy-driven lifecycle assessment frameworks to accelerate the deployment of 2e ORR systems. This work provides actionable guidance for advancing carbon-neutral chemical manufacturing through electrochemical routes aligned with global net-zero goals.

稳定、选择性和碳中性工业过氧化氢电合成的多尺度催化剂工程
电催化双电子氧还原反应(2e - ORR)已成为可持续合成过氧化氢(H2O2)的关键策略,为能源密集型蒽醌工艺提供了碳中性替代方案。这篇综述批判性地综合了最近在催化剂设计、机理理解和系统集成方面的突破,以解决持续的选择性和稳定性之间的权衡。关键进展包括电子调制、表面功能化和疏水控制的原子水平工程,通过精确调节*OOH吸附能和抑制4e -途径,实现了95%的H2O2选择性。层级化结构,如流过电极和催化膜,通过约束效应和界面工程,在工业电流密度(>; 200毫安厘米−2)下延长了500小时以上的运行稳定性。新兴的operando表征技术与机器学习加速模拟相结合,现在可以动态映射活性位点的进化和降解机制。整合可再生能源投入和循环碳战略的系统级创新证明了净负排放H2O2生产的中试规模可行性。然而,在可扩展性、波动负载下催化剂的长期耐久性以及实验室和工业应用之间的技术经济差距方面的持续挑战需要迫切关注。我们提出了一个多学科路线图,结合材料基因组计划、模块化反应堆设计和政策驱动的生命周期评估框架,以加速2e - ORR系统的部署。这项工作为通过符合全球净零目标的电化学路线推进碳中和化学品制造提供了可行的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信